This is the preview version of the Wisconsin State Legislature site.
Please see http://docs.legis.wisconsin.gov for the production version.
(
)
´
=
where:
E is the emission rate of NOx from the duct burner, ng/J (lb/Mwh) gross output
ERsg is the average hourly emission rate of NOx exiting the steam generating unit heat input calculated using appropriate F-factor as described in Method 19 in 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17 (1), ng/J (lb/million Btu)
Hcc is the average hourly heqt input rate of entire combined cycle unit, J/hr (million Btu/hr)
Occ is the average hourly gross energy output from entire combined cycle unit, J(Mwh)
NR 440.20(6)(k)3.3. When an affected duct burner steam generating unit utilizes a common steam turbine with one or more affected duct burner steam generating units, the owner or operator shall do one of the following:
NR 440.20(6)(k)3.a.a. Determine compliance with the applicable NOx emissions limits by measuring the emissions combined with the emissions from the other units utilizing the common steam turbine.
NR 440.20(6)(k)3.b.b. Develop, demonstrate and provide information satisfactory to the department on methods for apportioning the combined gross energy output from the steam turbine for each of the affected duct burners. The department may approve a demonstrated substitute method for apportioning the combined gross energy output measured at the steam turbine whenever the demonstration ensures accurate estimation of emissions regulated under this section.
NR 440.20(7)(7)Emission monitoring.
NR 440.20(7)(a)(a) The owner or operator of an affected facility shall install, calibrate, maintain and operate a continuous monitoring system, and record the output of the system, for measuring the opacity of emissions discharged to the atmosphere, except where gaseous fuel is the only fuel combusted. If opacity interference due to water droplets exists in the stack (for example, from the use of a flue gas desulfurization (FGD) system), the opacity shall be monitored upstream of the interference (at the inlet to the FGD system). If opacity interference is experienced at all locations (both at the inlet and outlet of the sulfur dioxide control system), alternate parameters indicative of the particulate matter control system’s performance shall be monitored (subject to the approval of the department).
NR 440.20(7)(b)(b) The owner or operator of an affected facility shall install, calibrate, maintain and operate a continuous monitoring system, and record the output of the system, for measuring sulfur dioxide emissions, except where natural gas is the only fuel combusted, as follows:
NR 440.20(7)(b)1.1. Sulfur dioxide emissions shall be monitored at both the inlet and outlet of the sulfur dioxide control device.
NR 440.20(7)(b)2.2. For a facility which qualifies under the provisions of sub. (4) (d), sulfur dioxide emissions shall only be monitored as discharged to the atmosphere.
NR 440.20(7)(b)3.3. An “as fired” fuel monitoring system (upstream of coal pulverizers) meeting the requirements of Method 19, 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17, may be used to determine potential sulfur dioxide emissions in place of a continuous sulfur dioxide emission monitor at the inlet to the sulfur dioxide control device as required under subd. 1.
NR 440.20(7)(c)1.1. The owner or operator of an affected facility shall install, calibrate, maintain and operate a continuous monitoring system, and record the output of the system for measuring nitrogen oxides emissions discharged to the atmosphere, except as provided in subd. 2.
NR 440.20(7)(c)2.2. If the owner or operator has installed a nitrogen oxides emission rate continuous emission monitoring system (CEMS) to meet the requirements of 40 CFR part 75 and is continuing to meet the ongoing requirements of 40 CFR part 75, that CEMS may be used to meet the requirement of this paragraph, except that the owner or operator shall also meet the requirements of sub. (9). Data reported to meet the requirements of sub. (9) may not include data substituted using the missing data procedures in 40 CFR part 75, subpart D, nor shall the data have been bias adjusted according to the procedures of 40 CFR part 75.
NR 440.20(7)(d)(d) The owner or operator of an affected facility shall install, calibrate, maintain and operate a continuous monitoring system, and record the output of the system, for measuring the oxygen or carbon dioxide content of the flue gases at each location where sulfur dioxide or nitrogen oxides emissions are monitored.
NR 440.20(7)(e)(e) The continuous monitoring systems under pars. (b), (c) and (d) shall be operated and data recorded during all periods of operation of the affected facility including periods of startup, shutdown, malfunction or emergency conditions, except for continuous monitoring system breakdowns, repairs, calibration checks and zero and span adjustments.
NR 440.20(7)(f)(f) The owner or operator shall obtain emission data for at least 18 hours in at least 22 out of 30 successive boiler operating days. If this minimum data requirement cannot be met with a continuous monitoring system, the owner or operator shall supplement emission data with other monitoring systems approved by the department or the reference methods and procedures as described in par. (h).
NR 440.20(7)(g)(g) The one-hour averages required under s. NR 440.13 (8) shall be expressed in ng/J (lbs/million Btu) heat input and used to calculate the average emission rates under sub. (6). The one-hour averages shall be calculated using the data points required under s. NR 440.13 (2). At least 2 data points shall be used to calculate the one-hour averages.
NR 440.20(7)(h)(h) When it becomes necessary to supplement continuous monitoring system data to meet the minimum data requirements in par. (f), the owner or operator shall use the reference methods and procedures as specified in this paragraph. Acceptable alternative methods and procedures are given in par. (j).
NR 440.20(7)(h)1.1. Method 6 shall be used to determine the SO2 concentration at the same location as the SO2 monitor. Samples shall be taken at 60 minute intervals. The sampling time and sample volume for each sample shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Each sample represents a 1-hour average.
NR 440.20(7)(h)2.2. Method 7 shall be used to determine the NOx concentration at the same location as the NOx monitor. Samples shall be taken at 30-minute intervals. The arithmetic average of 2 consecutive samples represent a 1-hour average.
NR 440.20(7)(h)3.3. The emission rate correction factor, integrated bag sampling and analysis procedure of Method 3B shall be used to determine the O2 or CO2 concentration at the same location as the O2 or CO2 monitor. Samples shall be taken for at least 30 minutes in each hour. Each sample represents a 1-hour average.
NR 440.20(7)(h)4.4. The procedures in Method 19 shall be used to compute each 1-hour average concentration in ng/J (lb/million Btu) heat input.
NR 440.20(7)(i)(i) The owner or operator shall use methods and procedures in this paragraph to conduct monitoring system performance evaluations under s. NR 440.13 (3) and calibration checks under s. NR 440.13 (4). Acceptable alternative methods and procedures are given in par. (j).
NR 440.20(7)(i)1.1. Methods 3B, 6 and 7 shall be used to determine O2, SO2 and NOx concentrations, respectively.
NR 440.20(7)(i)2.2. SO2 or NOx (NO), as applicable, shall be used for preparing the calibration gas mixtures (in N2, as applicable) under Performance Specification 2 of Appendix B of 40 CFR part 60, incorporated by reference in s. NR 440.17.
NR 440.20(7)(i)3.3. For affected facilities burning only fossil fuel, the span value for a continuous monitoring system for measuring opacity shall be between 60 and 80% and for a continuous monitoring system measuring nitrogen oxides shall be determined as follows:
where:
x is the fraction of total heat input derived from gaseous fossil fuel
y is the fraction of total heat input derived from liquid fossil fuel
z is the fraction of total heat input derived from solid fossil fuel
NR 440.20(7)(i)4.4. All span values computed under par. (b) 3. for burning combinations of fossil fuels shall be rounded to the nearest 500 ppm.
NR 440.20(7)(i)5.5. For affected facilities burning fossil fuel, alone or in combination with nonfossil fuel, the span value of the sulfur dioxide continuous monitoring system at the inlet to the sulfur dioxide control device shall be 125% of the maximum estimated hourly potential emissions of the fuel fired, and the outlet of the sulfur dioxide control device shall be 50% of maximum estimated hourly potential emissions of the fuel fired.
NR 440.20(7)(j)(j) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this subsection. All test methods are in Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17.
NR 440.20(7)(j)1.1. For Method 6, Method 6A or 6B (whenever Methods 6 and 3 or 3B data are used) or 6C may be used. Each Method 6B sample obtained over 24 hours represents 24 1-hour averages. If Method 6A or 6B is used under par. (i), the conditions under s. NR 440.19 (7) (d) 1. apply; these conditions do not apply under par. (h).
NR 440.20(7)(j)2.2. For Method 7, Method 7A, 7C, 7D or 7E may be used. If Method 7C, 7D or 7E is used, the sampling time for each run shall be 1 hour.
NR 440.20(7)(j)3.3. For Method 3, Method 3A may be used if the sampling time is 1 hour.
NR 440.20(7)(j)4.4. For Method 3B, Method 3A may be used.
NR 440.20(7)(k)(k) The procedures specified in subds. 1. to 3. shall be used to determine gross output for sources demonstrating compliance with the output-based standard under sub. (5) (d) 1.
NR 440.20(7)(k)1.1. The owner or operator of an affected facility with electricity generation shall install, calibrate, maintain and operate a wattmeter; measure gross electrical output in megawatt-hours on a continuous basis and record the output of the monitor.
NR 440.20(7)(k)2.2. The owner or operator of an affected facility with process steam generation shall install, calibrate, maintain and operate meters for steam flow, temperature and pressure; measure gross process steam output in joules per hour (Btu per hour) on a continuous basis and record the output of the monitor.
NR 440.20(7)(k)3.3. For affected facilities generating process steam in combination with electrical generation, the gross energy output is determined from the gross electrical output measured in accordance with subd. 1. plus 50% of the gross thermal output of the process steam measured in accordance with subd. 2.
NR 440.20(7)(L)(L) The owner or operator of an affected facility demonstrating compliance with the output-based standard under sub. (5) (d) 1. shall do one of the following:
NR 440.20(7)(L)1.1. Install, certify, operate and maintain a continuous flow monitoring system meeting the requirements of Performance Specification 6 in 40 CFR part 60, Appendix B, and Procedure 1 in 40 CFR part 60, Appendix F, both incorporated by reference in s. NR 440.17 (1), and record the output of the system for measuring the flow of exhaust gases discharged to the atmosphere.
NR 440.20(7)(L)2.2. Use data from a continuous flow monitoring system certified according to the requirements of 40 CFR 75.20, meeting the applicable quality control and quality assurance requirement of 40 CFR 75.21 and validated according to 40 CFR 75.23.
NR 440.20(7)(m)(m) The owner or operator of an affected unit that qualifies as a gas-fired or oil-fired unit, as defined in 40 CFR 72.2, may use, as an alternative to the requirements specified in either par. (L) 1. or 2., a fuel flow monitoring system certified and operated according to the requirements of 40 CFR part 75, Appendix D, incorporated by reference in s. NR 440.17 (1).
NR 440.20(7)(n)(n) The owner or operator of a duct burner which is subject to the NOx standards of sub. (5) (a) 1. or (d) 1. is not required to install or operate a continuous emissions monitoring system to measure NOx emissions; a wattmeter to measure gross electrical output; meters to measure steam flow, temperature and pressure; and a continuous flow monitoring system to measure the flow of exhaust gases discharged to the atmosphere.
NR 440.20(8)(8)Compliance determination procedures and methods.
NR 440.20(8)(a)(a) In conducting the performance tests required in s. NR 440.08, the owner or operator shall use as reference methods and procedures the methods in Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17, or the methods and procedures as specified in this subsection, except as provided in s. NR 440.08 (2). Section NR 440.08 (6) does not apply to this subsection for SO2 and NOx. Acceptable alternative methods are given in par. (e).
NR 440.20(8)(b)(b) The owner or operator shall determine compliance with the particulate matter standards in sub. (3) as follows:
NR 440.20(8)(b)1.1. The dry basis F factor (O2) procedures in Method 19 shall be used to compute the emission rate of particulate matter.
NR 440.20(8)(b)2.2. For the particulate matter concentration, Method 5 shall be used at affected facilities without wet FGD systems and Method 5B shall be used after wet FGD systems.
NR 440.20(8)(b)2.a.a. The sampling time and sample volume for each run shall be at least 120 minutes and 1.70 dscm (60 dscf). The probe and filter holder heating system in the sampling train may be set to provide an average gas temperature of no greater than 160±14°C (320±25°F).
NR 440.20(8)(b)2.b.b. For each particulate run, the emission rate correction factor, integrated or grab sampling and analysis procedures of Method 3B shall be used to determine the O2 concentration. The O2 sample shall be obtained simultaneously with, and at the same traverse points as, the particulate run. If the particulate run has more than 12 traverse points, the O2 simultaneous traverse points may be reduced to 12 provided that Method 1 is used to locate the 12 O2 traverse points. If the grab sampling procedure is used, the O2 concentration for the run shall be the arithmetic mean of the sample O2 concentrations at all traverse points.
NR 440.20(8)(b)3.3. Method 9 and the procedures in s. NR 440.11 shall be used to determine opacity.
NR 440.20(8)(c)(c) The owner or operator shall determine compliance with the SO2 standards in sub. (4) as follows:
NR 440.20(8)(c)1.1. The percent of potential SO2 emissions (% Ps) to the atmosphere shall be computed using the following equation:
% Ps = [(100 - %Rf) (100 - %Rg)]/100
where:
%Ps is the percent of potential SO2 emissions, percent
%Rf is the percent reduction from fuel pretreatment, percent
%Rg is the percent reduction by SO2 control system, percent
NR 440.20(8)(c)2.2. The procedures in Method 19 may be used to determine percent reduction (%Rf) of sulfur by such processes as fuel pretreatment (physical coal cleaning, hydrodesulfurization of fuel oil, etc.), coal pulverizers, and bottom and flyash interactions. This determination is optional.
NR 440.20(8)(c)3.3. The procedures in Method 19 shall be used to determine the percent SO2 reduction (%Rg) of any SO2 control system. Alternatively, a combination of an‘as fired’ fuel monitor and emission rates measured after the control system, following the procedures in Method 19, may be used if the percent reduction is calculated using the average emission rate from the SO2 control device and the average SO2 input rate from the ‘as fired’ fuel analysis for 30 successive boiler operating days.
NR 440.20(8)(c)4.4. The appropriate procedures in Method 19 shall be used to determine the emission rate.
NR 440.20(8)(c)5.5. The continuous monitoring system in sub. (7) (b) and (d) shall be used to determine the concentrations of SO2 and CO2 or O2.
NR 440.20(8)(d)(d) The owner or operator shall determine compliance with the NOx standard in sub. (5) as follows:
NR 440.20(8)(d)1.1. The appropriate procedures in Method 19 shall be used to determine the emission rate of NOx.
NR 440.20(8)(d)2.2. The continuous monitoring system in sub. (7) (c) and (d) shall be used to determine the concentrations of NOx and CO2 or O2.
NR 440.20(8)(e)(e) The owner or operator may use the following as alternatives to the reference methods and procedures specified in this subsection:
NR 440.20(8)(e)1.1. For Method 5 or 5B, Method 17 may be used at facilities with or without wet FGD systems if the stack temperature at the sampling location does not exceed an average temperature of 160°C (320 °F). The procedures of sections 2.1 and 2.3 of Method 5B may be used in Method 17 only if it is used after wet FGD systems. Method 17 may not be used after wet FGD systems if the effluent is saturated or laden with water droplets.
NR 440.20(8)(e)2.2. The Fc factor (CO2 ) procedures in Method 19 may be used to compute the emission rate of particulate matter under the stipulations of s. NR 440.19 (7) (d) 1. The CO2 shall be determined in the same manner as the O2 concentration.
NR 440.20(8)(f)(f) Electric utility combined cycle gas turbines are performance tested for particulate matter, sulfur dioxide and nitrogen oxides using the procedures of Method 19 of 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17 (1). The sulfur dioxide and nitrogen oxides emission rates from the gas turbine used in Method 19 calculations are determined when the gas turbine is performance tested under s. NR 440.50. The potential uncontrolled particulate matter emission rate from a gas turbine is defined as 17 ng/J (0.04 lb/million Btu) heat input.
NR 440.20(9)(9)Reporting requirements.
NR 440.20(9)(a)(a) For sulfur dioxide, nitrogen oxides and particulate matter emissions, the performance test data from the initial performance test and from the performance evaluation of the continuous monitors (including the transmissometer) shall be submitted to the department.
NR 440.20(9)(b)(b) For sulfur dioxide and nitrogen oxides the following information shall be reported to the department for each 24-hour period.
NR 440.20(9)(b)1.1. Calendar date.
NR 440.20(9)(b)2.2. The average sulfur dioxide and nitrogen oxide emission rates (ng/J or lb/million Btu) for each 30 successive boiler operating days, ending with the last 30-day period in the quarter; reasons for noncompliance with the emission standards; and description of corrective actions taken.
NR 440.20(9)(b)3.3. Percent reduction of the potential combustion concentration of sulfur dioxide for each 30 successive boiler operating days, ending with the last 30-day period in the quarter; reasons for noncompliance with the standard; and description of corrective actions taken.
NR 440.20(9)(b)4.4. Identification of the boiler operating days for which pollutant or diluent data have not been obtained by an approved method for at least 18 hours of operation of the facility; justification for not obtaining sufficient data; and description of corrective actions taken.
NR 440.20(9)(b)5.5. Identification of the times when emissions data have been excluded from the calculation of average emission rates because of startup, shutdown, malfunction (NOx only), emergency conditions (SO2 only) or other reasons, and justification for excluding data for reasons other than startup, shutdown, malfunction or emergency conditions.
NR 440.20(9)(b)6.6. Identification of “F” factor used for calculations, method of determination and type of fuel combusted.
NR 440.20(9)(b)7.7. Identification of times when hourly averages have been obtained based on manual sampling methods.
NR 440.20(9)(b)8.8. Identification of the times when the pollutant concentration exceeded full span of the continuous monitoring system.
NR 440.20(9)(b)9.9. Description of any modifications to the continuous monitoring system which could affect the ability of the continuous monitoring system to comply with Performance Specification 2 or 3 of 40 CFR part 60, Appendix B, incorporated by reference in s. NR 440.17.
Loading...
Loading...
Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.