NR 219.04 Text29 Approved methods for the analysis of silver in industrial wastewaters at concentrations of 1 mg/L and above are inadequate where silver exists as an inorganic halide. Silver halides such as the bromide and chloride are relatively insoluble in reagents such as nitric acid but are readily soluble in an aqueous buffer of sodium thiosulfate and sodium hydroxide to pH of 12. Therefore, for levels of silver above 1 mg/L, 20 mL of sample should be diluted to 100 mL by adding 40 mL each of 2 M Na2S2O3 and NaOH. Standards should be prepared in the same manner. For levels of silver below 1 mg/L the approved method is satisfactory.
NR 219.04 Text30 The use of EDTA decreases method sensitivity. Analysts may omit EDTA or replace with another suitable complexing reagent provided that all method specified quality control acceptance criteria are met.
NR 219.04 Text31 For samples known or suspected to contain high levels of silver (e.g., in excess of 4 mg/L), cyanogen iodide should be used to keep the silver in solution for analysis. Prepare a cyanogen iodide solution by adding 4.0 mL of concentrated NH4OH, 6.5 g of KCN, and 5.0 mL of a 1.0 N solution of I2 to 50 mL of reagent water in a volumetric flask and dilute to 100.0 mL. After digestion of the sample, adjust the pH of the digestate to >7 to prevent the formation of HCN under acidic conditions. Add 1 mL of the cyanogen iodide solution to the sample digestate and adjust the volume to 100 mL with reagent water (NOT acid). If cyanogen iodide is added to sample digestates, then silver standards must be prepared that contain cyanogen iodide as well. Prepare working standards by diluting a small volume of a silver stock solution with water and adjusting the pH>7 with NH4OH. Add 1 mL of the cyanogen iodide solution and let stand 1 hour. Transfer to a 100-mL volumetric flask and dilute to volume with water.
NR 219.04 Text32 “Water Temperature-Influential Factors, Field Measurement and Data Presentation,” Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 1, Chapter D1. 1975. USGS. Available from: U.S. Geological Survey, 604 S. Pickett Street, Alexandria, VA 22304.
NR 219.04 Text33 Method 8009, Zincon Method for Zinc, Hach Handbook of Water Analysis, 1979. Hach Company. Loveland, CO 80537. Available on-line at http:/www.hach.com.
NR 219.04 Text34 Method AES0029, Direct Current Plasma (DCP) Optical Emission Spectrometric Method for Trace Elemental Analysis of Water and Wastes. 1986-Revised 1991. Thermo Jarrell Ash Corporation. Available from: Thermo Scientific, 81 Wyman Street, Waltham, MA 02454.
NR 219.04 Text35 In-Situ Method 1004-8-2009, Carbonaceous Biochemical Oxygen Demand (CBOD) Measurement by Optical Probe. 2009. In-Situ Incorporated.
NR 219.04 Text36 Microwave-assisted digestion may be employed for this metal, when analyzed by this methodology. Closed Vessel Microwave Digestion of Wastewater Samples for Determination of Metals. April 16, 1992. CEM Corporation, P.O. Box 200, Matthews, NC 28106–0200.
NR 219.04 Text37 When determining boron and silica, only plastic, PTFE, or quartz laboratory ware may be used from start until completion of analysis.
NR 219.04 Text38 Only use n-hexane (n-Hexane—85% minimum purity, 99.0% min. saturated C6 isomers, residue less than 1 mg/L) extraction solvent when determining Oil and Grease parameters—Hexane Extractable Material (HEM), or Silica Gel Treated HEM (analogous to EPA Methods 1664 Rev. A and 1664 Rev. B). Use of other extraction solvents is prohibited.39 Method PAI-DK01, Nitrogen, Total Kjeldahl, Block Digestion, Steam Distillation, Titrimetric Detection. Revised December 22, 1994. OI Analytical/ALP- KEM, P.O. Box 9010, College Station, TX 77842.
NR 219.04 Text40 Method PAI-DK02, Nitrogen, Total Kjeldahl, Block Digestion, Steam Distillation, Colorimetric Detection. Revised December 22, 1994. OI Analytical.
NR 219.04 Text41 Method PAI-DK03, Nitrogen, Total Kjeldahl, Block Digestion, Automated FIA Gas Diffusion. Revised December 22, 1994. OI Analytical/ALPKEM, P.O. Box 9010, College Station, TX 77842.
NR 219.04 Text42 Method 1664 Rev. B is the revised version of EPA Method 1664 Rev. A. U.S. EPA. February 1999, Revision A. Method 1664, n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. EPA-821-R-98-002. U.S. EPA. February 2010, Revision B. Method 1664, n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. EPA-821-R-10-001. Available at NTIS, PB–121949, U.S. Department of Commerce, 5285 Port Royal, Springfield, VA 22161.
NR 219.04 Text43 Method 1631, Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, EPA-821-R-02-019. Revision E. August 2002, U.S. EPA. The application of clean techniques described in EPA’s Method 1669:Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels,EPA-821-R-96-011, are recommended to preclude contamination at low-level, trace metal determinations. Available at NTIS, PB-121949, U.S. Department of Commerce, 5285 Port Royal, Springfield, Virginia 22161.
NR 219.04 Text44 Method OIA-1677-09, Available Cyanide by Ligand Exchange and Flow Injection Analysis (FIA). 2010. OI Analytical/ALPKEM, P.O. Box 9010, College Station, TX 77842.
NR 219.04 Text45 Open File Report 00-170, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Ammonium Plus Organic Nitrogen by a Kjeldahl Digestion Method and an Automated Photometric Finish that Includes Digest Cleanup by Gas Diffusion. 2000. USGS.
NR 219.04 Text46 Open File Report 93-449, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Chromium in Water by Graphite Furnace Atomic Absorption Spectrophotometry. 1993. USGS.
NR 219.04 Text47 Open File Report 97-198, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Molybdenum by Graphite Furnace Atomic Absorption Spectrophotometry. 1997. USGS.
NR 219.04 Text48 Open File Report 92-146, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Total Phosphorus by Kjeldahl Digestion Method and an Automated Colorimetric Finish That Includes Dialysis. 1992. USGS.
NR 219.04 Text49 Open File Report 98-639, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Arsenic and Selenium in Water and Sediment by Graphite Furnace-Atomic Absorption Spectrometry. 1999. USGS.
NR 219.04 Text50 Open File Report 98-165, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Elements in Whole-water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry. 1998. USGS.
NR 219.04 Text51 Open File Report 93-125, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments. 1993. USGS.
NR 219.04 Text52 Unless otherwise indicated, all EPA methods, excluding EPA Method 300.1-1, are published in U.S. EPA. May 1994. Methods for the Determination of Metals in Environmental Samples, Supplement I, EPA/600/R-94/111; or U.S. EPA. August 1993. Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100. EPA Method 300.1 is US EPA. Revision 1.0, 1997, including errata cover sheet April 27, 1999. Determination of Inorganic Ions in Drinking Water by Ion Chromatography.
NR 219.04 Text53 Styrene divinyl benzene beads (e.g., AMCO-AEPA-1 or equivalent) and stabilized formazin (e.g., Hach StablCalTMor equivalent) are acceptable substitutes for formazin.
NR 219.04 Text54 Method D6508, Test Method for Determination of Dissolved Inorganic Anions in Aqueous Matrices Using Capillary Ion Electrophoresis and Chromate Electrolyte. December 2000. Waters Corp., 34 Maple St., Milford, MA, 01757, Telephone: 508/482–2131, Fax: 508/482–3625.
NR 219.04 Text55 Kelada-01, Kelada Automated Test Methods for Total Cyanide, Acid Dissociable Cyanide, and Thiocyanate, EPA 821-B-01-009, Revision 1.2, August 2001. US EPA. National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161 [Order Number PB 2001–108275]. The toll free telephone number is: 800–553–6847.
NR 219.04 TextNote: A 450-W UV lamp may be used in this method instead of the 550-W lamp specified if it provides performance within the quality control (QC) acceptance criteria of the method in a given instrument. Similarly, modified flow cell configurations and flow conditions may be used in the method, provided that the QC acceptance criteria are met.
NR 219.04 Text56 QuikChem Method 10-204-00-1-X, Digestion and Distillation of Total Cyanide in Drinking and Wastewaters using MICRO DIST and Determination of Cyanide by Flow Injection Analysis. Revision 2.2, March 2005. Lachat Instruments. Available from Hach Company, P.O. Box 389, Loveland, CO 80537.
NR 219.04 Text57 When using sulfide removal test procedures described in EPA Method 335.4-1, reconstitute particulate that is filtered with the sample prior to distillation.
NR 219.04 Text58 Unless otherwise stated, if the language of this table specifies a sample digestion and/or distillation “followed by” analysis with a method, approved digestion and/or distillation are required prior to analysis.
NR 219.04 Text59 Samples analyzed for available cyanide using OI Analytical method OIA-1677-09 or ASTM method D6888-09 that contain particulate matter may be filtered only after the ligand exchange reagents have been added to the samples, because the ligand exchange process converts complexes containing available cyanide to free cyanide, which is not removed by filtration. Analysts are further cautioned to limit the time between the addition of the ligand exchange reagents and sample filtration to no more than 30 minutes to preclude settling of materials in samples.
NR 219.04 Text60 Analysts should be aware that pH optima and chromophore absorption maxima might differ when phenol is replaced by a substituted phenol as the color reagent in Berthelot Reaction (“phenol-hypochlorite reaction”) colorimetric ammonium determination methods. For example when phenol is used as the color reagent, pH optimum and wavelength of maximum absorbance are about 11.5 and 635 nm, respectively—see, Patton, C.J. and S.R. Crouch. March 1977. Anal. Chem. 49:464-469. These reaction parameters increase to pH > 12.6 and 665 nm when salicylate is used as the color reagent—see, Krom, M.D. April 1980. The Analyst 105:305-316.
NR 219.04 Text61 If atomic absorption or ICP instrumentation is not available, the aluminon colorimetric method detailed in the 19th Edition of Standard Methods may be used. This method has poorer precision and bias than the methods of choice.
NR 219.04 Text62 Easy (1-Reagent) Nitrate Method, Revision November 12, 2011. Craig Chinchilla.
NR 219.04 Text63 Hach Method 10360, Luminescence Measurement of Dissolved Oxygen in Water and Wastewater and for Use in the Determination of BOD5 and cBOD5. Revision 1.2, October 2011. Hach Company. This method may be used to measure dissolved oxygen when performing the methods approved in Table IB for measurement of biochemical oxygen demand (BOD) and carbonaceous biochemical oxygen demand (CBOD).
NR 219.04 Text64 In-Situ Method 1002-8-2009, Dissolved Oxygen (DO) Measurement by Optical Probe. 2009. In-Situ Incorporated.
NR 219.04 Text65 Mitchell Method M5331, Determination of Turbidity by Nephelometry. Revision 1.0, July 31, 2008. Leck Mitchell.
NR 219.04 Text66 Mitchell Method M5271, Determination of Turbidity by Nephelometry. Revision 1.0, July 31, 2008. Leck Mitchell.
NR 219.04 Text67 Orion Method AQ4500, Determination of Turbidity by Nephelometry. Revision 5, March 12, 2009. Thermo Scientific.
NR 219.04 Text68 EPA Method 200.5, Determination of Trace Elements in Drinking Water by Axially Viewed Inductively Coupled Plasma-Atomic Emission Spectrometry, EPA/600/R-06/115. Revision 4.2, October 2003. US EPA.
NR 219.04 Text69 Method 1627, Kinetic Test Method for the Prediction of Mine Drainage Quality, EPA-821-R-09-002. December 2011. US EPA.
NR 219.04 Text70 Techniques and Methods Book 5-B1, Determination of Elements in Natural-Water, Biota, Sediment and Soil Samples Using Collision/Reaction Cell Inductively Coupled Plasma-Mass Spectrometry, Chapter 1, Section B, Methods of the National Water Quality Laboratory, Book 5, Laboratory Analysis, 2006. USGS.
NR 219.04 Text71 Water-Resources Investigations Report 01-4132, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Organic Plus Inorganic Mercury in Filtered and Unfiltered Natural Water With Cold Vapor-Atomic Fluorescence Spectrometry, 2001. USGS.
NR 219.04 Text72 Quality control requirements for low level mercury are found in s. NR 106.145 (9) and (10), Wis. Adm. Code. Low-level mercury methods are performance based so some method modifications are allowable, provided quality control requirements are met. If an atomic absorption detector is substituted for atomic fluorescence detector, the appropriate method citation is 245.1 (manual) or 245.2 (automated). If method 1631E is modified to eliminate the purge and trap step, the appropriate method citation is 245.7.
NR 219.04 Text1 All parameters are expressed in micrograms per liter (mg/L) except for Method 1613B, in which the parameters are expressed in picograms per liter (pg/L).
NR 219.04 Text2 The full text of Methods 601-613, 624, 625, 1613B, 1624B, and 1625B are provided at Appendix A, Test Procedures for Analysis of Organic Pollutants, of 40 CFR Part 136. The standardized test procedure to be used to determine the method detection limit (MDL) for these test procedures is given at 40 CFR Part136, Appendix B, Definition and Procedure for the Determination of the Method Detection Limit.
NR 219.04 Text3 Methods for Benzidine: Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater. September 1978. U.S. EPA.
NR 219.04 Text4 Method 624 may be used for quantitative determination of acrolein and acrylonitrile, provided that the laboratory has documentation to substantiate the ability to detect and quantify these analytes at levels necessary to comply with any associated regulations. In addition, the use of sample introduction techniques other than simple purge-and-trap may be required. QC acceptance criteria from Method 603 should be used when analyzing samples for acrolein and acrylonitrile in the absence of such criteria in Method 624.
NR 219.04 Text5 Method 625 may be extended to include benzidine, hexachlorocyclopentadiene, N-nitrosodimethylamine, N-nitrosodi-n-propylamine, and N-nitrosodiphenylamine. However, when they are known to be present, Methods 605, 607, and 612, or Method 1625B, are preferred methods for these compounds.
NR 219.04 Text5a Method 625, screening only.
NR 219.04 Text6 Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency, Supplement to the 15th Edition of Standard Methods for the Examination of Water and Wastewater.1981. American Public Health Association (APHA).
NR 219.04 Text7 Each analyst must make an initial, one-time demonstration of their ability to generate acceptable precision and accuracy with Methods 601-603, 624, 625, 1624B, and 1625B in accordance with procedures each in Section 8.2 of each of these Methods. Additionally, each laboratory, on an on-going basis must spike and analyze 10% (5% for Methods 624 and 625 and 100% for methods 1624B and 1625B) of all samples to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of any parameter falls outside the warning limits, the analytical results for that parameter in the unspiked sample are suspect. The results should be reported, but cannot be used to demonstrate regulatory compliance. These quality control requirements also apply to the Standard Methods, ASTM Methods, and other methods cited.
NR 219.04 Text8 Organochlorine Pesticides and PCBs in Wastewater Using EmporeTMDisk. Revised October 28, 1994. 3M Corporation.
NR 219.04 Text9 Method O-3116-87 is in Open File Report 93-125, Methods of Analysis by U.S. Geological Survey National Water Quality Laboratory—Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments. 1993. USGS.
NR 219.04 Text10 Analysts may use Fluid Management Systems, Inc. Power-Prep system in place of manual cleanup provided the analyst meets the requirements of Method 1613B (as specified in Section 9 of the method) and permitting authorities. Method 1613, Revision B, Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. Revision B, 1994. U.S. EPA. The full text of this method is provided in Appendix A to 40 CFR Part 136 and at http://water.epa.gov/scitech/methods/cwa/index.cfm.
NR 219.04 Text11 Method 1650, Adsorbable Organic Halides by Adsorption and Coulometric Titration. Revision C, 1997. U.S. EPA. Method 1653, Chlorinated Phenolics in Wastewater by In Situ Acetylation and GCMS. Revision A, 1997. U.S. EPA. The full text for both of these methods is provided at Appendix A, “Methods 1650 and 1653”, in Part 430, The Pulp, Paper, and Paperboard Point Source Category. Also available on-line at http:/www.gpo.gov/.
NR 219.04 Text12 EPA Method 1668A may be used to test for all PCB congeners. If this method is employed, all PCB congeners shall be delineated. Non-detects shall be treated as zero. The values that are between the limit of detection and the limit of quantitation shall be used when calculating the total value of all congeners. All results shall be added together and the total PCB concentration reported. It is recognized a number of congeners will co-elute with others, so there will not be 209 results to sum.
NR 219.04 Text13 If congener specific analysis is performed, the list of congeners tested shall include at least congener numbers 5, 18, 31, 44, 52, 66, 87, 101, 110, 138, 141, 151, 153, 170, 180, 183, 187, and 206 plus any other additional congeners which might be reasonably expected to occur in the particular sample. If Aroclor analysis is performed, clean up steps of the extract shall be performed as necessary to remove interference. If congener specific analysis is done, clean up steps of the extract shall be performed as necessary to remove interference. If desired limits of detection cannot be achieved after using the appropriate clean up techniques, a reporting limit that is achievable for the Aroclors or each congener for sample shall be determined. This report limit should be reported and qualified indicating the presence of an interference. The laboratory conducting the analysis shall perform as many the following methods as necessary to remove interference:
NR 219.04 TextFlorisil, Gel Permeation, Silica Gel, Alumina, Sulfur Clean Up, Sulfuric Acid Clean Up.
NR 219.04 Text14 “Method 1668A, Revision A: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by HRGC/HRMS”, EPA-821-R-00-002, Environmental Protection Agency, Office of Water, Washington, D.C., December 1999. Available from: the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.
NR 219.04 Text1 Pesticides are listed in this table by common name for the convenience of the reader. Additional pesticides may be found under Table C, where entries are listed by chemical name.
NR 219.04 Text2 The standardized test procedure to be used to determine the method detection limit (MDL) for these test procedures is given at 40 CFR Part 136, Appendix B, Definition and Procedure for the Determination of the Method Detection Limit.
NR 219.04 Text3 Methods for Benzidine, Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater. September 1978. U.S. EPA. This EPA publication includes thin-layer chromatography (TLC) methods.
NR 219.04 Text4 Methods for the Determination of Organic Substances in Water and Fluvial Sediments, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A3. 1987. USGS.
NR 219.04 Text5 The method may be extended to include á-BHC, ã-BHC, endosulfan I, endosulfanII, and endrin. However, when they are known to exist, Method 608 is the preferred method.
NR 219.04 Text6 Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency, Supplement to the 15th Edition of Standard Methods for the Examination of Water and Wastewater.1981. American Public Health Association (APHA).
NR 219.04 Text7 Each analyst must make an initial, one-time, demonstration of their ability to generate acceptable precision and accuracy with Methods 608 and 625 in accordance with procedures given in Section 8.2 of each of these methods. Additionally, each laboratory, on an on-going basis, must spike and analyze 10% of all samples analyzed with Method 608 or 5% of all samples analyzed with Method 625 to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of any parameter falls outside the warning limits, the analytical results for that parameter in the unspiked sample are suspect. The results should be reported, but cannot be used to demonstrate regulatory compliance. These quality control requirements also apply to the Standard Methods, ASTM Methods, and other methods cited.
NR 219.04 Text8 Organochlorine Pesticides and PCBs in Wastewater Using Empore TM Disk. Revised October 28, 1994. 3M Corporation.
NR 219.04 Text9 Method O-3106-93 is in Open File Report 94-37, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Triazine and Other Nitrogen-Containing Compounds by Gas Chromatography With Nitrogen Phosphorus Detectors. 1994. USGS.
NR 219.04 Text10 EPA Methods 608.1, 608.2, 614, 614.1, 615, 617, 619, 622, 622.1, 627, and 632 are found in Methods for the Determination of Nonconventional Pesticides in Municipal and Industrial Wastewater, EPA 821-R-92-002, April 1992, U.S. EPA.
NR 219.04 TextThe full text of Methods 608 and 625 are provided at 40 CFR Part 136, Appendix A, Test Procedures for Analysis of Organic Pollutants.
NR 219.04 TextEPA Methods 505, 507, 508, 525.1, 531.1 and 553 are in Methods for the Determination of Nonconventional Pesticides in Municipal and Industrial Wastewater, Volume II, EPA 821-R-93-010B, 1993, U.S. EPA.
NR 219.04 TextEPA Method 525.2 is in Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry, Revision 2.0, 1995, U.S. EPA.
NR 219.04 TextEPA methods 1656 and 1657 are in Methods For The Determination of Nonconventional Pesticides In Municipal and Industrial Wastewater, Volume I, EPA 821-R-93-010A, 1993, U.S. EPA.
NR 219.04 Text11 Method O-1126-95 is in Open-File Report 95-181, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring. 1995. USGS.
NR 219.04 Text12 Method O-2060-01 is in Water-Resources Investigations Report 01-4134, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of Pesticides in Water by Graphitized Carbon-Based Solid-Phase Extraction and High-Performance Liquid Chromatography/Mass Spectrometry. 2001. USGS.
NR 219.04 Text13 Method O-2002-01 is in Water-Resources Investigations Report 01-4098, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of moderate-use pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry. 2001. USGS.
NR 219.04 Text14 Method O-1121-91 is in Open-File Report 91-519, Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of organonitrogen herbicides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring. 1992. USGS.
NR 219.04 Text1 Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032 (1980), U.S. Environmental Protection Agency, August 1980.
NR 219.04 Text2 Fishman, M. J. and Brown, Eugene, “Selected Methods of the U.S. Geological Survey of Analysis of Wastewaters,” U.S. Geological Survey, Open-File Report 76-177 (1976).
NR 219.04 Text3 The method found on p. 75 measures only the dissolved portion while the method on p. 78 measures only the suspended portion. Therefore, the two results must be added to obtain the “total.”
NR 219.04 Text1 “Test Methods for Evaluating Solid Waste, Physical/Chemical Methods,” SW–846, Environmental Protection Agency, Office of Solid Waste and Emergency Response, 401 M Street, S.W., Washington D.C. 20460, September 1986 (Third edition), including July 1992 (Update I), September 1994 (Update II), August 1993 (Update IIA), January 1995 (Update IIB), December 1996 (Update III), April 1998 (Update IIIA), November 2004 (Update IIIB), February 2007 (Update IV) updates. Available from: The Superintendent of Documents, U.S. Government Printing Office, Room 190, Federal Building, P.O. Box 371954, Pittsburgh, PA 15250–7954. Available online at https://www.epa.gov/hw-sw846/sw-846-compendium.
NR 219.04 Text2 If an alternative digestion procedure is specified in the analytical method, the digestion in this table shall be used. In all cases, consult the analytical method for special requirements and cautions. SW–846 method 3051A is an acceptable alternate digestion procedure to SW–846 method 3050B.
NR 219.04 Text3 “Methods for the Determination of Metals in Environmental Samples”, EPA-600/4-91-010, Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH 45268, June 1991. Available from: the National Technical Information Service (NTIS), 5258 Port Royal Road, Springfield, Virginia 22161.
Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.