“Vaporizer” means a heat transfer facility designed to introduce thermal energy in a controlled manner for changing a liquid or semisolid to a vapor or gaseous state.
“Waterfront LNG plant” means an LNG plant with docks, wharves, piers, or other structures in, on, or immediately adjacent to the navigable waters of the United States or Puerto Rico and any shore area immediately adjacent to those waters to which vessels may be secured and at which LNG cargo operations may be conducted.
[45 FR 9203, Feb. 11, 1980, as amended by Amdt. 193-1, 45 FR 57418, Aug. 28, 1980; Amdt. 193-2, 45 FR 70404, Oct. 23, 1980; Amdt. 193-10, 61 FR 18517, April 26, 1996]
193.2009 Rules of regulatory construction.
(a) As used in this part:
(1) “Includes” means including but not limited to;
(2) “May” means is permitted to or is authorized to;
(3) “May not” means is not permitted to or is not authorized to; and
(4) “Shall” or “must” is used in the mandatory and imperative sense.
(b) In this part:
(1) Words importing the singular include the plural; and
(2) Words importing the plural include the singular.
193.2011 Reporting.
Leaks and spills of LNG must be reported in accordance with the requirements of Part 191 of this chapter.
193.2013 Incorporation by reference.
(a) There are incorporated by reference in this part all materials referred to in this part that are not set forth in full. The incorporated materials are deemed published under 5 U.S.C. 552(a) and 1 CFR Part 51 and are part of this regulation as though set forth in full. All incorporated materials are listed in Appendix A to this Part 193 with the applicable editions in parentheses following the title of the referenced material. Only the latest listed edition applies, except that an earlier listed edition may be followed with respect to components which are designed, manufactured, or installed in accordance with the earlier edition before the latest edition is adopted, unless otherwise provided in this part. The incorporated materials are subject to change, but any change will be announced by publication in the Federal Register before it becomes effective. (b) All incorporated materials are available for inspection in the Research and Special Programs Administration, 400 Seventh Street, SW., Washington, DC, and at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC. These materials have been approved for incorporation by reference by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. In addition, the incorporated materials are available from the respective organizations listed in appendix A to this part. (c) Incorporated by reference provisions approved by the Director of the Federal Register.
[45 FR 9203, Feb. 11, 1980, as amended by Amdt. 193-2, 45 FR 70410, Oct. 23, 1980; 50 FR 45732, Nov. 1, 1985; 58 FR 14522, March 18, 1993]
193.2015 [Reserved]
[59 FR 17281, April 12, 1994]
193.2017 Plans and procedures.
(a) Each operator shall maintain at each LNG plant the plans and procedures required for that plant by this part. The plans and procedures must be available upon request for review and inspection by the Administrator or any State Agency that has submitted a current certification or agreement with respect to the plant under the pipeline safety laws (49 U.S.C. 60101 et seq.). In addition, each change to the plans or procedures must be available at the LNG plant for review and inspection within 20 days after the change is made. (b) The Administrator or the State Agency that has submitted a current certification under section 5(a) of the Natural Gas Pipeline Safety Act with respect to the pipeline facility governed by an operator’s plans and procedures may, after notice and opportunity for hearing as provided in 49 CFR 190.237 or the relevant State procedures, require the operator to amend its plans and procedures as necessary to provide a reasonable level of safety. [Amdt. 193-2, 45 FR 70404, Oct. 23, 1980; Amdt. 193-7, 56 FR 31090, July 9, 1991; Amdt. 193-10, 61 FR 18517, April 26, 1996]
193.2019 Mobile and temporary LNG facilities
(a) Mobile and temporary LNG facilities for peakshaving application, for service maintenance during gas pipeline systems repair/alteration, or for other short term applications need not meet the requirements of this part if the facilities are in compliance with applicable sections of NFPA 59A (1996 edition).
(b) The State agency having jurisdiction over pipeline safety in the State in which the portable LNG equipment is to be located must be provided with a location description for the installation at least 2 weeks in advance, including to the extent practical, the details of siting, leakage containment or control, fire fighting equipment, and methods employed to restrict public access, except that in the case of emergency where such notice is not possible, as much advance notice as possible must be provided.
[Amdt. 193-14, 62 FR 41312, Aug. 1, 1997; 62 FR 48952, Sept. 18, 1997]
RESEARCH AND SPECIAL PROGRAMS
ADMINISTRATION, DOT
SUBPART B -- SITING REQUIREMENTS
193.2051 Scope.
This subpart prescribes siting requirements for the following LNG facilities: Containers and their impounding systems, transfer systems and their impounding systems, emergency shutdown control systems, fire control systems, and associated foundations, support systems, and normal or auxiliary power facilities necessary to maintain safety.
[Amdt. 193-1, 45 FR 57418, Aug. 28, 1980]
193.2055 General.
An LNG facility must be located at a site of suitable size, topography, and configuration so that the facility can be designed to minimize the hazards to persons and offsite property resulting from leaks and spills of LNG and other hazardous fluids at the site. In selecting a site, each operator shall determine all site-related characteristics which could jeopardize the integrity and security of the facility. A site must provide ease of access so that personnel, equipment, and materials from offsite locations can reach the site for fire fighting or controlling spill associated hazards or for evacuation of personnel.
193.2057 Thermal radiation protection.
(a) Thermal exclusion zone. Each LNG container and LNG transfer system must have a thermal exclusion zone in accordance with the following:
(1) Within the thermal exclusion zone, the impounding system may not be located closer to targets listed in paragraph (d) of this section than the exclusion distance “d” determined according to this section, unless the target is a pipeline facility of the operator.
(2) If grading and drainage are used under §193.2149(b), operators must comply with the requirements of this section by assuming the space needed for drainage and collection of spilled liquid is an impounding system.
(b) Measurement. The exclusion distance “d” is the horizontal distance measured from the impoundment area to the target where the following apply:
(1) The maximum calculated exclusion distance for each thermal flux level shall be used for that exposure (offsite target) in paragraph (d) of this section.
(2) The wind speed producing the maximum exclusion distances shall be used except for wind speeds that occur less than 5 percent of the time based on recorded data for the area.
(3) The ambient temperature and relative humidity that produce the maximum exclusion distance shall be used except that values that occur less than 5 percent of the time based on recorded data for the area shall not be used.
(4) Properties of LNG with the highest anticipated heating value shall be used.
(5) The height of the flame base should be that of any dike or containment in relation to the horizontal reference plane. The height of the target shall be in relation to the same reference plane.
(c) Exclusion distance length. The length of an exclusion distance for each impounding space may not be less than the distance “d” determined in accordance with one of the following:
(1) The method of calculating the exclusion distances for levels of radiant exposure listed in paragraph (d) of this section shall be the method described in Gas Research Institute report GRI-89/0176 and also available as the “LNGFIRE” computer program from GRI.
A=the largest horizontal area across the impounding space measured at the lowest point along the top inside edge of the dike.
f=values for targets prescribed in paragraph (d) of this section.
(2) Determine “d” from a mathematical model for thermal radiation and other appropriate fire characteristics which assures that the incident thermal flux levels in paragraph (d) of this section are not exceeded. The model must:
(i) Use atmospheric conditions which, if applicable, result in longer exclusion distances than other atmospheric conditions occurring at least 95 percent of the time based on recorded data for the site area;
(ii) Have been evaluated and verified by testing at a scale, considering scaling effects, appropriate for the range of application;
(iii) Have been submitted to the Administrator for approval, with supportive data as necessary to demonstrate validity; and
(iv) Have received approval by the Administrator.
(d) Limiting values for incident radiant flux on offsite targets. The maximum incident radiant flux at an offsite target from burning of a total spill in an impounding space must be limited to the distances in paragraph (c) of this section using the following values of “(f)” or “Incident Flux”:
[45 FR 9203, Feb. 11, 1980, as amended by Amdt. 193-1, 45 FR 57418, Aug. 28, 1980; Amdt. 193-13, 62 FR 8404, Feb. 25, 1997; 62 FR 36465, July 8, 1997]
193.2059 Flammable vapor-gas dispersion protection.
(a) Dispersion exclusion zone. Except as provided by paragraph (e) of this section, each LNG container and LNG transfer system must have a dispersion exclusion zone with a boundary described by the minimum dispersion distance computed in accordance with this section. The following are prohibited in a dispersion exclusion zone unless it is an LNG facility of the operator:
(1) Outdoor areas occupied by 20 or more persons during normal use, such as beaches, playgrounds, outdoor theaters, other recreation areas, or other places of public assembly.
(2) Buildings that are:
(i) Used for residences;
(ii) Occupied by 20 or more persons during normal use;
(iii) Contain explosive, flammable, or toxic materials in hazardous quantities;
(iv) Have exceptional value or contain objects of exceptional value based on historic uniqueness described in Federal, State, or local registers; or
(v) Could result in additional hazard if exposed to a vapor-gas cloud.
(b) Measuring dispersion distance. The dispersion distance is measured radially from the inside edge of an impounding system along the ground contour to the exclusion zone boundary.
(c) Computing dispersion distance. A minimum dispersion distance must be computed for the impounding system. If grading and drainage are used under §193.2149(b), operators must comply with the requirements of this section by assuming the space needed for drainage and collection of spilled liquid in an impounding system. Dispersion distances must be determined in accordance with the following dispersion parameters, using the “DEGADIS” model described in Gas Research Institute report No. GRI 89/0242 titled “LNG Vapor Dispersion Predication with the DEGADIS Dense Gas Dispersion Model”, or a model for vapor dispersion which meets the requirements of §193.2057(c)(2)(ii) through (iv):
(1) Average gas concentration in air = 2.5 percent.
(2) Dispersion conditions are a combination of those which result in longer predicted downwind dispersion distances than other weather conditions at the site at least 90 percent of the time, based on U.S. Government weather data, or as an alternative where the model used gives longer distances at lower wind speeds, Category F atmosphere, wind speed = 4.5 miles per hour, relative humidity equals 50.0 percent, and atmospheric temperatures = 0.0 C.
(3) Dispersion coordinates y, z, and H, where applicable, = 0.
(4) A surface roughness factor of 3 cm shall be used. Higher values for the roughness factor may be used if it can be shown that the terrain both upwind and downwind of the vapor cloud has dense vegetation and that the vapor cloud height is more than ten times the height of the obstacles encountered by the vapor cloud.
(d) Vaporization design rate. In computing dispersion distance under paragraph (c) of this section, the following applies:
(1) Vaporization results from the spill caused by an assumed rupture of a single transfer pipe (or multiple pipes that lack provisions to prevent parallel flow) which has the greatest overall flow capacity, discharging at maximum potential capacity, in accordance with the following conditions:
(i) The rate of vaporization is not less than the sum of flash vaporization and vaporization from boiling by heat transfer from contact surfaces during the time necessary for spill detection, instrument response, and automatic shutdown by the emergency shutdown system, but not less than 10 minutes, plus, in the case of impounding systems for LNG storage tanks with side or bottom penetrations, the time necessary for the liquid level in the tank to reach the level of the penetration or equilibrate with the liquid impounded assuming failure of the internal shutoff valve.
(ii) In determining variations in the vaporization rate due to surface contact, the time necessary to wet 100 percent of the impounding floor area shall be determined by equation C-9 in the 1974 AGA report titled “Evaluation of LNG Vapor Control Methods,” or by using an equivalent personal computer program based on equation C-9 or by an alternative model which meets the requirements of §193.2057(c)(2)(ii) through (iv).
(iii) After spill flow is terminated, the rate of vaporization is vaporization of the remaining spillage, if any, from boiling by heat transfer from contact surfaces that are reducing in area and temperature as a function of time.
(iv) Vapor detention space is all space provided for liquid impoundment and vapor detention outside the component served, less the volume occupied by the spilled liquid at the time the vapor escapes the vapor detention space.
(2) The boiling rate of LNG on which dispersion distance is based is determined using the weighted average value of the thermal properties of the contact surfaces in the impounding space determined from eight representative experimental tests on the materials involved. If surfaces are insulated, the insulation must be designed, installed, and maintained so that it will retain its performance characteristics under spill conditions.
(e) Planned vapor control. An LNG facility need not have a dispersion exclusion zone if the Administrator, RSPA finds that compliance with paragraph (a) of this section would be impractical and the operator prepares and follows a plan for controlling LNG vapor that is found acceptable by the Director. The plan must include circumstances under which LNG vapor is controlled to preclude the dispersion of a flammable mixture from the LNG facility under all predictable environmental conditions that could adversely affect control. The reliability of the method of control must be demonstrated by testing or experience with LNG spills.
[45 FR 9203, Feb. 11, 1980, as amended by Amdt. 193-1, 45 FR 57418, Aug. 28, 1980; Amdt. 193-13, 62 FR 8404, Feb. 25, 1997; 62 FR 36465, July 8, 1997; Amdt. 193-15, 63 FR 7723, Feb. 17, 1998]
193.2061 Seismic investigation and design forces.