NR 811.32(1)(c)1.1. The protective casing shall terminate at least 12 inches above the floor and be surrounded by a pump base or a minimum 1.5-inch thick concrete collar. Either the pump base or the concrete collar shall be installed to a height at least 6 inches above the floor. NR 811.32(1)(c)2.2. If a pump base is installed, any other outer well casing shall be terminated a minimum of 4 inches above the finished floor and incorporated into the pump base. NR 811.32(1)(c)3.3. A short section of outer well casing may be installed around the protective casing and the annular space between the 2 casings filled with grout to meet the collar requirement of subd. 1. NR 811.32(2)(2) Drop pipes. Vertical drop pipes for submersible pumps located within the well casing shall be constructed of steel, stainless steel, or galvanized steel pipe. The department shall be contacted to request approval for an alternate minimum 150 psi pressured rated plastic drop pipe material specification which shall be granted if its use can be justified due to a corrosive water condition. All vertical drop pipe material specifications shall meet or exceed the requirements of s. NR 812.28 and the Pipe and Tubing for Water Services and Private Water Mains table found in SPS Table 384.30-7. NR 811.32 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (2) made under s. 13.92 (4) (b) 7., Stats., Register December 2011 No. 672. NR 811.33NR 811.33 Motor protection. If backspin can be expected to occur, the motor shall be provided with a time delay or non-reverse ratchet to protect the motor in case the pump controls are energized before the pump stops backspinning. NR 811.33 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.34NR 811.34 Pump variable output control devices. Installations where pumps and pump motors will be physically or electronically controlled by a variable output control device shall meet the following requirements: NR 811.34(1)(1) Pumping capacity to meet peak demand. The gallon per minute discharge rates of the pump or pumps shall be capable of meeting the peak demand rate when there is no elevated storage and the pressure tank storage volume will be reduced due to the installation of the variable output control device or devices. NR 811.34(2)(2) High pressure cut-out switch. A high pressure cut-out switch shall be installed on the pump discharge piping to stop the pump motor when a preset maximum discharge pressure is detected if the pump shut-off head at the maximum possible speed will exceed the safe working pressures of the piping and appurtenances. NR 811.34(3)(3) Pressure relief valve. A pressure relief valve shall be installed on the pump discharge piping sized to allow adequate pressure to be relieved if a malfunction that would cause the pump to discharge at the maximum possible rate would result in pressures exceeding the safe working pressures of the piping and appurtenances. NR 811.34(4)(4) Backup controls. All water systems supplied by one well or booster pump shall be provided with a redundant means of controlling the operation of the pump motor. Such means may include the installation of an electrical bypass of the variable output control device along with the installation of pressure switches or other department approved installation. NR 811.34(5)(5) Flow pacing for chemical feed pumps. Where pump discharge rates will vary after initial startup of the pump, all chemical feed pumps shall be paced from a flow proportional signal from a water meter. This requirement is in addition to any requirement for the chemical feed pump to be wired to operate in series with the pump motor starter and any required secondary chemical feed pump control mechanism. NR 811.34(6)(6) Adequate storage. Storage shall meet the following requirements when there is no elevated storage or the minimum pressure tank storage volume normally required by s. NR 811.61 (7) will be reduced due to the installation of one or more variable output control devices. NR 811.34(6)(a)(a) For other-than-municipal water systems and small municipal water systems not provided with elevated storage, the gross pressure tank storage volume shall be a minimum of 2.5 times the design pump output in gallons per minute. When a vertical turbine pump requiring prelubrication or an auxiliary power source with an automatic transfer switch is employed, calculations shall be provided to the department to demonstrate that the storage volume is adequate to provide the necessary time for the prelubrication to occur or for the auxiliary power source to come on line before the system pressure drops below 20 psi as a result of a brief electrical power outage. NR 811.34(6)(b)(b) For a control valve type of installation, the gross pressure tank storage volume shall be a minimum of 5 times the design pump output in gallons per minute to prevent the pump motor from over-heating. NR 811.34(6)(c)(c) For booster or high-lift pump installations where the pump is discharging to a distribution system without elevated storage, the gross pressure tank storage volume shall be a minimum of 2.5 times the design pump output in gallons per minute. NR 811.34(6)(d)(d) As an alternate to pars. (a) to (c), the department may approve other proposed pressure tank storage volumes when justified by supporting information submitted to the department. NR 811.34(6)(e)(e) Control or piping and valve measures shall be provided to prevent water from becoming stagnant in pressure tanks. The variable output control device shall be programmed to allow a 10-psi pressure drop from pump ‘off’ mode to pump ‘on’ mode to allow time for the pressure tanks to empty. NR 811.34(6)(f)(f) Additional storage volume shall be provided for adequate operation of water treatment equipment including storage volumes necessary to obtain required reaction or disinfection detention times in detention vessels. The storage volumes shall be calculated by the design engineer assuming the pump or pumps are discharging at the maximum possible rate. NR 811.34(7)(7) Ventilation. Automatically controlled forced air ventilation shall be installed for any room where an electronic variable output control device will be installed and room temperatures will exceed 90 degrees F. NR 811.34(8)(8) Measures to prevent damage from corrosive chemicals. The installation of an electronic variable output control device may not be allowed in a corrosive environment. Electronic variable output control devices may not be installed in the same room with fluoride acid chemical feed equipment. Preventive measures such as adequate sealing and ventilation of chemical containers and solution tanks shall be taken to minimize the production of corrosive fumes from other kinds of chemical feed installations, including sodium hypochlorite. The installation of a separate chemical feed room or the installation of room or chemical feed system ventilation improvements may be required by the department where significant damage from corrosive fumes has been documented. NR 811.34(9)(9) Dehumidification or air conditioning. Dehumidification or air conditioning equipment shall be installed in any room where an electronic variable output control device will be installed and excessive moisture will be a concern. NR 811.35NR 811.35 Pitless units. Pitless units shall be installed in a manner to provide equivalent security, sanitary protection, accessibility, and operational flexibility to an above grade pump discharge installation and in accordance with the requirements of this section and as shown in Figure No. 7 in the Appendix. NR 811.35(1)(1) Termination. Pitless units shall terminate a minimum of 12 inches above a concrete floor as required by ss. NR 811.12 (1) and 811.32 (1) (a). If the vent assembly is built into the pitless unit, the portion of the pitless unit where the bottom of the vent assembly is located shall be terminated a minimum of 24 inches above the concrete floor. Pitless units shall be provided with a protective concrete collar where they pass through the concrete floor as required by s. NR 811.32 (1) (c). The exterior exposed conduit pipe for the pump wiring shall be rigid steel and the conduit pipe incorporated into the concrete collar. NR 811.35(2)(2) Enclosure. The exposed portion of a pitless unit shall be surrounded by a weather resistant, watertight, locked, and vented enclosure secured to a concrete floor as required by s. NR 811.25 (1) (i). The top surface of the concrete floor shall be located a minimum of 6 inches above the finished grade. NR 811.35(3)(3) Appurtenances. The top of the pitless unit shall be sealed sanitarily in accordance with s. NR 811.32 (1) (b), provided with a well vent and water level measuring equipment in accordance with s. NR 811.36, and shall be provided with a frost-proof down-turned metal smooth-end sampling faucet terminating above the top of the pitless unit and a minimum of 12 inches above the concrete floor of the enclosure unless the sampling faucet is installed remote from the pitless unit in accordance with sub. (6) (h). NR 811.35(4)(4) Discharge piping. Discharge piping from a pitless unit shall meet the following requirements: NR 811.35(4)(a)(a) The discharge piping from the pitless unit shall be directed to a separate building located above grade where all of the applicable pump discharge piping appurtenances shall be installed in accordance with s. NR 811.37 and Figure No. 7 in the Appendix. NR 811.35(4)(b)(b) The discharge piping from the pump in the well to the above grade pump discharge piping shall remain pressurized at all times. No provisions for drain back of the discharge piping may be allowed. A shut-off valve shall not be installed in the buried portion of the pitless unit discharge piping unless approved by the department as part of a pump-to-waste installation. NR 811.35(4)(c)(c) The buried portion of a pitless unit discharge piping along with any joints or fittings shall be ductile iron, steel, or plastic piping meeting at minimum the AWWA pressure class 150 water main standards required under s. NR 811.69. Plastic piping shall not be used in areas where soil or groundwater contamination may be present. Plastic piping shall be transitioned to metal piping within 12 inches above the floor of the building into which it will be directed, under par. (a), unless minimum schedule 80 PVC pipe is installed in the building as allowed under s. NR 811.28 (5) (b). NR 811.35(5)(5) Check valves. A check valve shall be installed in the submersible pump discharge piping in the well immediately above the pump. A check valve shall not be installed in the buried pitless unit discharge piping. A check valve may not be installed in the above grade pump discharge piping unless preceded by the pump on and off controls, or one or more pressure tanks, or unless the department approves an alternate method to maintain positive pressure in the piping under all operating conditions. NR 811.35(6)(a)(a) Pitless units shall be factory assembled and pressure tested, full length units, with the make and model number having received individual department approval for use. The inside diameter of the pitless unit shall not be smaller than the inside diameter of the well casing pipe as required by s. NR 812.31 (2) (b). NR 811.35(6)(b)(b) The department may not approve installation of a pitless unit unless any temporary outer well casing is totally removed from the well during the well construction process. Pitless units shall be attached only to the protective grouted well casing, including wells constructed with gravel packed screens. NR 811.35(6)(c)(c) The top surface of the remaining well grout shall be no greater than one foot below the installation depth of the pitless unit, which is the well casing cut-off depth. NR 811.35(6)(e)(e) Pitless units shall be installed by a licensed pump installer. The installed pitless unit shall be tested and proven watertight under a pressure of not less than 14 psig. The pressure shall be maintained for a minimum of 30 minutes. Additionally, any leaks detected shall be sealed during the pressure test. The installer shall notify the department a minimum of 48 hours before performing the pressure testing so that a department employee may witness the test. A report on the results of the pressure testing, signed by a licensed pump installer, shall be submitted to the department before placing the well in service. NR 811.35(6)(f)(f) A certification by the licensed pump installer that installed the pitless unit confirming that the well was originally grouted to the ground surface and that the requirements of pars. (b) and (c) were met, shall be submitted to the department along with the pressure testing report and a copy of the well construction report. NR 811.35(6)(g)(g) Backfilling of the excavation shall commence as soon as practical after the installation and a successful pressure test of the pitless unit. NR 811.35(6)(h)(h) For slab-on-grade enclosures, a below grade length of pump discharge piping from the pitless unit, sufficient to extend beyond the enclosure, shall be installed prior to backfilling of the excavation and construction of the concrete floor slab. The buried piping shall be temporarily capped in a sanitary manner unless the piping is immediately extended and connected to the remainder of the system. During the installation of the discharge piping, if the sampling faucet riser pipe is not installed within the well and pitless unit, a metal riser pipe shall be extended vertically from the below grade discharge piping to terminate at a height a minimum of 12 inches above the top of the future concrete floor. The riser pipe shall be fitted with a frost-proof, down-turned, metal, smooth-end sampling faucet or shall be temporarily capped. NR 811.35 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (6) (intro.) made under s. 13.92 (4) (b) 7., Stats., Register November 2010 No. 659. NR 811.36(1)(1) Well vent. Each well shall be vented to the atmosphere in accordance with the following requirements: NR 811.36(1)(a)(a) For wells without pitless units, a metal vent pipe shall be installed that terminates in a 24-mesh corrosion resistant screened “U” bend or mushroom cap at least 24 inches above the floor. The vent pipe diameter shall be a minimum of 2 inches for well casings 10 inches in diameter and larger. The department may, on a case-by-case basis, allow smaller diameter well vents on existing installations if water drawdown has not compromised the sanitary seal or require larger diameter well vents for wells with significant water level drawdown. Vent piping shall be welded watertight to the side of the well casing a minimum of 4 inches above the floor and may extend through a concrete pump base or collar where one is present. Alternatively, vent piping may project through a well seal or pump discharge head if the well seal or discharge head is watertight and will facilitate the installation of the vent pipe. NR 811.36(1)(b)(b) For wells with pitless units, a metal vent pipe shall be installed which terminates in a 24-mesh corrosion resistant screened “U” bend or mushroom cap at least 24 inches above the floor. The pitless unit vent area shall be equal to or greater than the area provided by a 2-inch diameter vent pipe for pitless units 10 inches in diameter or larger. Vent piping shall extend above or be incorporated into the top of the pitless unit or be welded watertight to the side of the pitless unit a minimum of 4 inches above the floor and may extend through a concrete pump base or collar where one is present. NR 811.36 NoteNote: It is recommended that vent installations for pitless units be factory installed to prevent damage to the integrity of factory units and paint systems.
NR 811.36(1)(c)(c) If the well is flowing, the vent shall terminate above the artesian water level or a suitable automatic valve shall be provided. NR 811.36(2)(a)(a) Provisions shall be made for measurement of static and pumping water levels in the completed well by the use of an electric depth gauge, pressure transducer or an air line attached to the pump column and an altitude gauge. NR 811.36(2)(b)(b) The installation shall be constructed to prevent entrance of foreign material. NR 811.36(2)(c)(c) Air lines may not be installed through vent pipes unless justified when modifications are being made to existing installations, the minimum 2-inch diameter vent pipe area is maintained where applicable, and the specific approval of the department is obtained. NR 811.37NR 811.37 Pump discharge lines. Pump discharge lines shall meet the requirements of this section and as shown in Figure Nos. 8 and 9 in the Appendix. NR 811.37(1)(1) Buried lines. Adequate positive pressure shall be maintained on all buried piping. Pump suction and discharge lines that are to be buried shall be designed so that the line is under a continuous pressure head that is higher than the elevation of the ground surface under all operating conditions. Lines where a positive pressure head that is higher than the elevation of the ground surface cannot be maintained may be installed if the lines are encased for their entire length in a watertight pipe conduit or a tunnel. Buried lines that, under all operating conditions, are not under a positive pressure head that is higher than the elevation of the ground surface and are not encased for their entire length in watertight pipe conduit or a tunnel are not permitted. NR 811.37(2)(2) Above grade piping materials. Above grade pump discharge line piping materials shall meet the requirements of s. NR 811.28 (5) (b). NR 811.37(3)(3) Location of appurtenances. Pump discharge piping containing appurtenances such as valves, sampling faucets, water meters, and other equipment shall be located above the ground surface. NR 811.37(4)(4) Pump-to-waste. All wells and high-lift pump stations shall be provided with a means to pump to waste. This shall be a plugged tee or blind flange or a shut-off valve followed by a hose connection installed on the pump discharge piping inside the pump station. For municipal and subdivision water systems, a valve and hydrant may be installed outside the pump station on the buried pump discharge piping. NR 811.37 NoteNote: It is recommended that pump-to-waste fittings installed inside the pump station be installed as close as possible to the well or pump head in order to minimize the piping and appurtenances that water to be wasted will be pumped through. The department recommends a valve and hydrant be installed outside the pump station on the buried pump discharge piping for municipal and subdivision water systems.
NR 811.37(5)(5) Pump discharge piping appurtenances. The following appurtenances shall be provided for pump discharge piping in addition to the means for pumping the well to waste required in sub. (4). Additional requirements for the installation of pump discharge piping and appurtenances for pitless unit installations are given in s. NR 811.35. NR 811.37(5)(a)(a) Air-vacuum and air relief valves. The connecting and discharge lines for all air-vacuum and air relief valves shall be constructed of copper, ductile iron, steel, or stainless steel and shall face downward and terminate with a 24-mesh corrosion resistant screen, at least 24 inches above the floor. For line-shaft vertical turbine pump discharge pipes, an air-vacuum relief valve shall be installed between the pump and the check valve. For well line-shaft vertical turbine pump discharge pipes that discharge directly to reservoirs, the air relief valve is not required but a vacuum relief valve and a check valve are required. The installation of an air-vacuum relief valve is not required for submersible pump installations when check valves are installed at the pump and above grade, and there are no weep holes in the pump drop pipe unless entrained air in the well water or pressure surges are a concern and the installation of an air relief valve is necessary or required by the department. NR 811.37(5)(b)(b) Sampling faucet. All pump discharge piping shall contain one or more sampling faucets meeting the following requirements: NR 811.37(5)(b)1.1. A water sampling faucet shall be installed and located upstream of any chemical addition or water treatment equipment to allow for the collection of raw water. If possible, the faucet shall be located prior to any above grade check valve. NR 811.37(5)(b)2.2. If chemical addition, water treatment, or water storage is installed, a second entry point sampling faucet shall be installed as far downstream of the chemical injection, water treatment, or water storage as practical. If necessary to obtain a water sample representing finished water quality, a water service lateral shall be brought back into the building and fitted with a sampling faucet after being connected to the building discharge water main outside the building. NR 811.37(5)(b)3.3. All sampling faucets shall be installed to terminate a minimum of 12 inches above the floor, have a down-turned smooth-end spout, be constructed of metal, have a minimum spout diameter of 0.25 inches, be installed directly on the piping conveying the water whenever possible, and be located in an area accessible for sampling. NR 811.37(5)(c)(c) Check valve or other type of automatically closing valve. A check valve shall be provided except if prohibited at pitless unit installations under s. NR 811.35 (5). Where extreme surge pressures occur, slow opening valves, voltage ramped motors, or other means of surge protection shall be provided. NR 811.37(5)(d)(d) Meters. All municipal well pump discharge pipes, all other-than-municipal well pump discharge pipes with pumps discharging at a rate greater than or equal to 70 gallons per minute or if chemical addition is practiced, all groundwater reservoir high-lift pumps if chemical addition is practiced, and all surface water low-lift and high-lift combined pump discharge pipes shall be provided with water meters to determine the quantity of water discharged. NR 811.37 NoteNote: It is recommended that an hour meter be installed for any pump motor where the pump discharge piping will not be provided with a water meter.
NR 811.37(5)(g)(g) Chemical injection tap. A chemical injection tap allowing chemical injection, shall be provided and installed in accordance with s. NR 811.39 (2) (f). NR 811.37 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; CR 22-074: am. (1), (5) (a), (b) 2. Register January 2024 No. 817, eff. 2-1-24. NR 811.38NR 811.38 General. This subchapter contains general requirements for the design and construction for chemical storage, handling, and addition facilities. Specific treatment design requirements are contained in subch. VII. Specific operating requirements are contained in subch. I of ch. NR 810. No chemicals may be applied to treat drinking water unless approved by the department. This requirement applies to first time application, temporary application, or when it is proposed to replace one chemical with another. The department shall be contacted prior to discontinuing the use of any chemical. NR 811.38 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.39(1)(1) Number of feeders. If chemical feed, such as chlorination, coagulation or other essential processes, is necessary to produce a water quality meeting the primary maximum contaminant levels, a minimum of 2 feeders shall be provided so that a standby unit or combination of units will be available to replace the largest unit during shut-downs. Spare parts shall be available for all feeders to replace parts which are subject to wear and damage. NR 811.39(2)(2) Design and capacity. The design and capacity of chemical feed equipment shall meet all of the following requirements: NR 811.39(2)(a)(a) Separate chemical feed systems. Separate chemical feed systems shall be provided in accordance with the following requirements: NR 811.39(2)(a)2.2. Separate disinfection chemical feed systems shall be provided if pre- and post- water treatment disinfection application points are installed. NR 811.39(2)(a)3.3. Each chemical feed pump or gas feeder shall take suction from its own dedicated chemical solution tank or gas cylinders. The department may approve multiple chemical feed pumps or gas feeders for the same process application point taking suction from the same chemical solution tank or gas cylinders in the following situations: NR 811.39(2)(a)3.a.a. Where multiple water sources are discharging to the same location. In this case, a means shall be provided for determining the flow from each individual water source. NR 811.39(2)(a)3.b.b. Where multiple pumps are pumping from the same water source and discharging to the same location through a combined header pipe. In this case, a means shall be provided for measuring total flow. NR 811.39(2)(a)3.c.c. For the situations in subd. 3. a. and b., a single chemical feeder with a single feed point or multiple chemical feeders with multiple feed points may be used, provided the installation meets the other requirements of this subchapter. NR 811.39 NoteNote: An example of subd. 3. a. would be multiple wells discharging to a single reservoir or water treatment plant. An example of subd. 3. b. would be multiple high-lift pumps taking suction from a single reservoir and discharging to a combined pump discharge pipe.
NR 811.39(2)(b)(b) Acceptable chemical feed pumps. Positive displacement diaphragm metering pumps, peristaltic chemical feed pumps or other pumps, as approved by the department, shall be used to feed liquid chemicals. Pumps shall be sized to match or exceed maximum head conditions found at the point of injection. NR 811.39(2)(c)(c) Chemical feeder settings. Feeders shall be able to supply, at all times, the necessary amounts of chemical at an accurate rate, throughout the range of feed. All positive displacement diaphragm metering pumps shall be operated at a minimum speed setting of 12 strokes per minute. For positive displacement diaphragm metering pumps with an adjustable stroke length the pumps shall be operated at a minimum of 20 percent of the maximum stroke length. Peristaltic chemical feed pumps shall be operated at a minimum of 10 percent of the maximum feeder output for the given interior diameter of the feed tube installed. If these operating requirements cannot be met using stock chemical solution, dilution of the chemical shall be required.
/exec_review/admin_code/nr/800/811
true
administrativecode
/exec_review/admin_code/nr/800/811/v/35/4/a
Department of Natural Resources (NR)
Chs. NR 800- ; Environmental Protection – Water Supply
administrativecode/NR 811.35(4)(a)
administrativecode/NR 811.35(4)(a)
section
true