NR 811.25(4)(4) Heating. Adequate heating shall be provided for the safe and efficient operation of the equipment. NR 811.25 NoteNote: In buildings not occupied by personnel, only enough heat need be provided to prevent freezing, unless higher temperatures are required for proper chemical addition or to allow water treatment and control equipment to function properly.
NR 811.25(5)(5) Ventilation. Ventilation for all pumping stations, pumphouses, and water treatment plant buildings is governed by applicable building codes. NR 811.25(6)(6) Dehumidification. A means for dehumidification shall be provided in pump rooms and in other water system related buildings where excess moisture could cause or is causing safety hazards or damage to equipment or piping. NR 811.25(7)(7) Lighting. All pumping stations, pumphouses, and water treatment plant buildings shall be provided with adequate interior and exterior lighting. The design of exterior lighting should promote security. NR 811.25(8)(8) Sanitary and other conveniences. All pumping stations, pumphouses, and water treatment plants shall be provided with potable water, lavatory, and toilet facilities except for unoccupied automatic stations or if such facilities are available elsewhere. All plumbing including fixtures, backflow protection, floor drains, hub drains, piping and their installation, testing, and maintenance shall conform to the requirements of chs. SPS 302, 305 and 381 to 384. NR 811.25(9)(9) Multipurpose buildings. Water supply buildings may be enclosed in or attached to buildings that serve multiple purposes such as a park building, garage, office, storage or restroom facility if the purposes for which the building are used are compatible with the protection of the water supply. In all cases the water supply facilities shall be separated by walls from the other building uses with access to the water supply facilities gained by separate locked doors and restricted to authorized water system personnel. The specific requirements for multipurpose buildings shall comply with subs. (1) to (8) where applicable. NR 811.25 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (1) (h) 2. c., 4., (8) made under s. 13.92 (4) (b) 6., 7., Stats., Register December 2011 No. 672; CR 22-074: cr. (1) (h) 2. bm. Register January 2024 No. 817, eff. 2-1-24. NR 811.26NR 811.26 Number of pumping units. All pumping stations for systems using either groundwater or surface water shall meet the following requirements: NR 811.26(1)(1) There shall be 2 or more pumping units, with each unit capable of supplying the peak demand. The department may approve exceptions under sub. (2), if additional pumping stations which can meet the peak demand are available or if the department determines that there will be a sufficient volume of storage available between pumping periods to allow for necessary repairs. Depending on the type and size of the water system, a sufficient volume of storage may include elevated storage, ground storage fitted with high-lift pumps and auxiliary power, and pressure tank storage. If only 2 units are provided, each unit shall be capable of supplying the peak demand. If more than 2 units are installed, the total number of units shall have sufficient capacity so that if any one pump is taken out of service, the remaining pumps are capable of supplying the peak demand. NR 811.26(2)(2) If no elevated storage is available and more than 50 living units are to be served, there shall be 2 or more wells or pumping units, each of which is capable of supplying the peak demand. An approved interconnection with another water system or a ground storage reservoir with high-lift pumps may be used in lieu of this requirement for other-than-municipal water systems. NR 811.26(3)(3) Have controls for proper alternation when 2 or more pumps are installed. NR 811.26 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.27NR 811.27 Auxiliary power. All municipal pumping stations, pumphouses, and water treatment plants shall have a standby auxiliary power source unless the department determines that there is sufficient pumping capacity with existing auxiliary power located at other water system facilities to provide at least an average day supply of water. Sufficient power shall be provided to operate pumps, treatment systems, chemical addition, control systems, and monitoring equipment. Auxiliary power for chemical addition, treatment, and monitoring equipment is not required if the treatment, chemical addition, control, and monitoring equipment is not necessary to meet the primary drinking water standards in ch. NR 809 or the continuous disinfection requirements of chs. NR 810 and 811. NR 811.27(1)(1) Power sources. Standby power may be provided by any of the following: NR 811.27(1)(a)(a) A dedicated on-site generator or engine. A dedicated on-site generator may be located inside or outside the building. Dedicated on-site engine-generator sets installed within the building shall be located in a separate room. Diesel fuel tanks shall be provided with secondary containment and interstitial leakage monitoring and the installation shall receive written approval from the department of safety and professional services or its authorized agent under ch. ATCP 93 prior to installation. All fuel lines shall be exposed above grade. Water lines to water cooled units shall be provided with backflow prevention in accordance with s. SPS 382.41. NR 811.27(1)(b)(b) A portable power source owned by the municipality and dedicated to the water supply facility operation. NR 811.27(1)(c)(c) A portable power source not owned by the municipality but only if the water system owner obtains a written agreement with the owner of any portable power source, including tractors or trailered engine-generator sets, that requires the water system owner to have primary access to the power source in an emergency and that allows the portable power source to be brought to the water system as required for testing. The portable power source shall be located in the community if practical. NR 811.27 NoteNote: The department recommends the use of water system owned dedicated on-site or portable engine-generator sets in all cases. It is recommended that the equipment necessary to convert natural gas fueled engines to propane be maintained on site in case the natural gas supply has to be shut off for any significant length of time. It is recommended that exterior engine-generator set installations be installed within a locked security fence.
NR 811.27(2)(2) Alternate prelubrication methods. The pump installation shall be provided with a prelubrication line with a valved bypass around the automatic control and backflow protection, if appropriate, in order to allow temporary continuous prelubrication, whenever automatic prelubrication of pump bearings is necessary and an auxiliary power supply is provided that will not provide power to the automatic prelubrication controls. NR 811.27 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (1) (a) made under s. 13.92 (4) (b) 6., 7., Stats., Register December 2011 No. 672; correction in (1) (a) made under s. 13.92 (4) (b) 7., Stats., Register October 2013 No. 694; CR 22-074: am. (1) (c) Register January 2024 No. 817, eff. 2-1-24. NR 811.28(1)(1) Suction or wet wells. Suction or wet wells, including installations where the pumps are installed on top of a reservoir, but excluding remote booster pumping installations shall: NR 811.28(1)(a)(a) Meet the applicable reservoir construction requirements of subch. IX. NR 811.28(1)(b)(b) Have all below grade metal pump cans, if installed, exposed in a basement or vault. NR 811.28(1)(c)(c) Have 2 pumping compartments or other means to allow the suction well to be taken out of service for inspection, maintenance, or repair. NR 811.28(2)(2) Suction lift. Suction lift shall be allowed only for distances of less than 15 feet and where provision is made for priming the pumps. Suction lift may not be permitted if buried piping carries the finished water. NR 811.28(3)(3) Priming. Prime water may not be of lesser sanitary quality than that of the water being pumped. Means shall be provided to prevent backflow. When an air-operated ejector is used, the screened intake shall draw clean air from a point at least 10 feet above the ground or other source of contamination, unless the air is filtered by apparatus approved by the department. Vacuum priming may be used. NR 811.28(4)(4) Automatic and remote controlled stations. All automatic stations shall be provided with automatic signaling equipment which will report pump on-off operation and the status of other important functions, such as intrusion alarms, to the main station. Pressure monitoring shall be included if a separate pressure zone is established. All remote controlled stations shall be electrically operated and controlled and shall be provided with reliable signaling equipment. NR 811.28 NoteNote: See subch. XI for booster pumping facilities in the distribution system.
NR 811.28(5)(a)(a) Valves. Pumps shall be adequately valved to permit satisfactory operation, maintenance and repair of the equipment. If foot valves are provided, they shall have a net valve area of at least 2.5 times the area of the suction pipe and shall be screened. Each pump shall have an automatically closing valve or check valve on the discharge side between the pump and shutoff valve. Devices such as motor controls, slow opening and closing check valves, or surge relief valves shall be installed where necessary to minimize pressure surges or water hammer. NR 811.28(5)(b)(b) Piping. Piping shall be designed to minimize friction losses and shall be protected against pressure surges or water hammer. Piping shall be supported, restrained, and buttressed as necessary. Where applicable, each pump shall have an individual suction line or manifolded lines that ensure similar hydraulic and operation conditions. Discharge piping exposed in buildings shall be ductile iron, copper, steel, stainless steel, or galvanized pipe. For other-than-municipal water systems, piping downstream of the control valve is subject to requirements under ch. SPS 383. The use of minimum schedule 80 PVC pipe meeting the requirements of SPS Table 384.30-7 is acceptable when the water to be carried in the piping can be documented as being aggressive to metal pipe or when necessary to be compatible with water treatment equipment and processes provided that the piping is properly restrained. All piping shall be certified to ANSI/NSF standard 61 dated March 15, 2022, which is incorporated by reference. NR 811.28 NoteNote: A copy of ANSI/NSF standard 61 dated March 15, 2022 is available for inspection at the Legislative Reference Bureau and may be obtained for personal use from NSF International, https://www.nsf.org/. NR 811.28(5)(c)(c) Gauges and meters. Each pump shall have a standard pressure gauge on its discharge line and have a compound pressure gauge on its suction line if suction pressures are expected to be encountered. Where suction or discharge headers are utilized, only one gauge is required on each header. In addition, the station shall have indicating, totalizing, and recording metering of the total water pumped. NR 811.28 NoteNote: Discharge pressure recording devices are recommended at the larger stations.
NR 811.28(5)(d)(d) Water seals. Water seals may not be supplied with water of a lesser sanitary quality than that of the water being pumped. Where pumps are sealed with potable water and are pumping water of lesser sanitary quality, the water supply to the seal shall: NR 811.28(5)(d)1.1. Be provided with a department of safety and professional services approved reduced principle backflow preventer or a break tank open to atmospheric pressure. NR 811.28(5)(d)2.2. Where a break tank is provided, have an air gap, at least 6 inches or 2 pipe diameters, whichever is greater, between the feeder line and the spill line of the tank. NR 811.28(6)(6) Painting of piping. In order to facilitate identification of piping in waterworks, pumping stations, pumphouses and, water treatment plants, it is recommended that the following color schemes be utilized for purposes of standardization: NR 811.28(6)(e)(e) For liquids or gases not listed above, a unique color scheme and labeling shall be used. In situations where 2 colors do not have sufficient contrast to easily differentiate between them, a 6 inch band of a contrasting color shall be painted on one pipe at approximately 30 inch intervals. The name of the liquid or gas should also be painted on the pipe. Arrows may be painted on the piping indicating the direction of flow. NR 811.28 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (5) (b), (d) 1. made under s. 13.92 (4) (b) 6., 7., Stats., Register December 2011 No. 672; CR 22-074: am. (5) (b) Register January 2024 No. 817, eff. 2-1-24. NR 811.29NR 811.29 Pumping capacity requirements. Figure No. 1 located in the Appendix shall be used for determining minimum pump capacities for domestic service only, unless specific information is submitted to the department for review and the department approves the alternate pump capacities. When using Figure No. 1, the number of homes may be reduced by one-third for apartment units, condominium units, and manufactured or mobile homes. As an alternative, for apartment units, condominium units, and manufactured or mobile homes, the minimum pump capacity may be reduced to 1 gallon per minute per living unit. The department may require the water system owner to perform more detailed engineering studies to determine pump capacities for multiple uses, including domestic, commercial, and industrial usage and fire protection. NR 811.30NR 811.30 General pump, motor and wiring installation requirements. NR 811.30(1)(1) Installation location. All nonsubmersible pump motors and all electrical controls shall be located above grade and protected from flooding, except as allowed for below grade booster pumping stations in s. NR 811.80 (3). NR 811.30(2)(2) Motor, wiring and electrical controls. All exposed wires shall be encased along their entire length and otherwise installed in a manner to prevent contamination of the water supply. All motors, wiring, and electrical controls shall be installed in conformance with all applicable state and local electrical code requirements. NR 811.30 NoteNote: It is recommended that all pumps and motors be assessed during design to ensure that they will be energy efficient throughout their operational range and over their usable service life. It is recommended that all pump motors be provided with a recording watt meter.
NR 811.30 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.31NR 811.31 Line-shaft vertical turbine pumps. NR 811.31(1)(1) Pump bases. Line-shaft vertical turbine pump base installations shall meet the requirements of this subsection and as shown in Figure Nos. 2 and 3 in the Appendix: NR 811.31(1)(a)(a) Line-shaft vertical turbine pumps shall be supported by a concrete pump base which is installed to a height at least 12 inches above the pump station floor. NR 811.31(1)(b)(b) The protective grouted casing of wells shall extend a minimum of one inch above the concrete pump base. If there is also an inner ungrouted casing, the inner casing shall extend a minimum of one inch above the pump base and the protective grouted outer casing shall extend a minimum of 4 inches above the floor and shall be incorporated into the concrete pump base. For these installations, a steel ring shall be welded between the inner and protective casings. NR 811.31(1)(c)(c) The metal surfaces between the pump head and base plate shall be machined or gasketed to provide a watertight seal. A gasket or sealant shall be provided between the base plate and the concrete pump foundation. NR 811.31(1)(d)(d) For high-lift line-shaft vertical turbine pumps installed above a reservoir, a steel casing shall be installed within the concrete pump base from the reservoir roof to a height above the pump base to provide a one inch sanitary lip. The requirements of pars. (a) to (c) shall also be met if applicable. NR 811.31(1m)(1m) Column pipes. Column pipes for lineshaft vertical turbine pumps located within the well casing shall be constructed of steel, stainless steel, or galvanized steel pipe. NR 811.31(2)(a)(a) Water lubricated pumps are required, except if oil lubricated pumps are necessary to provide positive lubrication. The oil used for pump lubrication shall be an NSF/ANSI Standard 61 approved mineral oil. Oil lubricated pumps may not be installed for wells in unconsolidated formations or for wells with shallow pump settings less than 250 feet. NR 811.31(2)(b)(b) For water lubricated pumps with static water levels deeper than 50 feet, provision shall be made for prelubricating the column bearings prior to pump startup. All prelubrication water lines shall be equipped with metering and controls to monitor and limit the volume of prelubrication water. At systems where chemical addition is practiced, solenoid valve control of the prelubrication water line shall be provided. If auxiliary power is provided, additional valving of the prelubrication water line shall be provided. When pump backspin is allowed to occur after the motor shuts off, the design engineer for the water system owner shall determine the necessity for lubrication during this period and provide for lubrication if necessary. NR 811.31 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; CR 22-074: cr. (1m), am. (2) (b) Register January 2024 No. 817, eff. 2-1-24. NR 811.32NR 811.32 Submersible vertical turbine pumps. NR 811.32(1)(1) Pump bases. If a submersible pump is used, the top of the well casing shall be effectively sealed against entrance of water under all conditions including vibration or movement of conductors or cables. Requirements for the installation of pitless units are provided in s. NR 811.35. Submersible pump installations shall meet the requirements of this subsection and as shown in Figure Nos. 4, 5, and 6 in the Appendix: NR 811.32(1)(a)(a) Termination above grade. The protective casing shall terminate above grade a minimum of 12 inches above a concrete floor. Submersible pump discharge pipes shall be extended to terminate through the top of the well casing. NR 811.32(1)(b)(b) Well seals. Well seals shall consist of a sanitary surface plate bolted down with a gasketed or machined seal to a flange welded to the well casing or alternatively, a department approved well seal with one-piece top plate. All openings in the well seal shall be sealed watertight with grommets or compression fittings to prevent the entrance of contaminants. NR 811.32(1)(c)1.1. The protective casing shall terminate at least 12 inches above the floor and be surrounded by a pump base or a minimum 1.5-inch thick concrete collar. Either the pump base or the concrete collar shall be installed to a height at least 6 inches above the floor. NR 811.32(1)(c)2.2. If a pump base is installed, any other outer well casing shall be terminated a minimum of 4 inches above the finished floor and incorporated into the pump base. NR 811.32(1)(c)3.3. A short section of outer well casing may be installed around the protective casing and the annular space between the 2 casings filled with grout to meet the collar requirement of subd. 1. NR 811.32(2)(2) Drop pipes. Vertical drop pipes for submersible pumps located within the well casing shall be constructed of steel, stainless steel, or galvanized steel pipe. The department shall be contacted to request approval for an alternate minimum 150 psi pressured rated plastic drop pipe material specification which shall be granted if its use can be justified due to a corrosive water condition. All vertical drop pipe material specifications shall meet or exceed the requirements of s. NR 812.28 and the Pipe and Tubing for Water Services and Private Water Mains table found in SPS Table 384.30-7. NR 811.32 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (2) made under s. 13.92 (4) (b) 7., Stats., Register December 2011 No. 672. NR 811.33NR 811.33 Motor protection. If backspin can be expected to occur, the motor shall be provided with a time delay or non-reverse ratchet to protect the motor in case the pump controls are energized before the pump stops backspinning. NR 811.33 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.34NR 811.34 Pump variable output control devices. Installations where pumps and pump motors will be physically or electronically controlled by a variable output control device shall meet the following requirements: NR 811.34(1)(1) Pumping capacity to meet peak demand. The gallon per minute discharge rates of the pump or pumps shall be capable of meeting the peak demand rate when there is no elevated storage and the pressure tank storage volume will be reduced due to the installation of the variable output control device or devices. NR 811.34(2)(2) High pressure cut-out switch. A high pressure cut-out switch shall be installed on the pump discharge piping to stop the pump motor when a preset maximum discharge pressure is detected if the pump shut-off head at the maximum possible speed will exceed the safe working pressures of the piping and appurtenances. NR 811.34(3)(3) Pressure relief valve. A pressure relief valve shall be installed on the pump discharge piping sized to allow adequate pressure to be relieved if a malfunction that would cause the pump to discharge at the maximum possible rate would result in pressures exceeding the safe working pressures of the piping and appurtenances. NR 811.34(4)(4) Backup controls. All water systems supplied by one well or booster pump shall be provided with a redundant means of controlling the operation of the pump motor. Such means may include the installation of an electrical bypass of the variable output control device along with the installation of pressure switches or other department approved installation. NR 811.34(5)(5) Flow pacing for chemical feed pumps. Where pump discharge rates will vary after initial startup of the pump, all chemical feed pumps shall be paced from a flow proportional signal from a water meter. This requirement is in addition to any requirement for the chemical feed pump to be wired to operate in series with the pump motor starter and any required secondary chemical feed pump control mechanism. NR 811.34(6)(6) Adequate storage. Storage shall meet the following requirements when there is no elevated storage or the minimum pressure tank storage volume normally required by s. NR 811.61 (7) will be reduced due to the installation of one or more variable output control devices. NR 811.34(6)(a)(a) For other-than-municipal water systems and small municipal water systems not provided with elevated storage, the gross pressure tank storage volume shall be a minimum of 2.5 times the design pump output in gallons per minute. When a vertical turbine pump requiring prelubrication or an auxiliary power source with an automatic transfer switch is employed, calculations shall be provided to the department to demonstrate that the storage volume is adequate to provide the necessary time for the prelubrication to occur or for the auxiliary power source to come on line before the system pressure drops below 20 psi as a result of a brief electrical power outage. NR 811.34(6)(b)(b) For a control valve type of installation, the gross pressure tank storage volume shall be a minimum of 5 times the design pump output in gallons per minute to prevent the pump motor from over-heating. NR 811.34(6)(c)(c) For booster or high-lift pump installations where the pump is discharging to a distribution system without elevated storage, the gross pressure tank storage volume shall be a minimum of 2.5 times the design pump output in gallons per minute. NR 811.34(6)(d)(d) As an alternate to pars. (a) to (c), the department may approve other proposed pressure tank storage volumes when justified by supporting information submitted to the department. NR 811.34(6)(e)(e) Control or piping and valve measures shall be provided to prevent water from becoming stagnant in pressure tanks. The variable output control device shall be programmed to allow a 10-psi pressure drop from pump ‘off’ mode to pump ‘on’ mode to allow time for the pressure tanks to empty. NR 811.34(6)(f)(f) Additional storage volume shall be provided for adequate operation of water treatment equipment including storage volumes necessary to obtain required reaction or disinfection detention times in detention vessels. The storage volumes shall be calculated by the design engineer assuming the pump or pumps are discharging at the maximum possible rate. NR 811.34(7)(7) Ventilation. Automatically controlled forced air ventilation shall be installed for any room where an electronic variable output control device will be installed and room temperatures will exceed 90 degrees F. NR 811.34(8)(8) Measures to prevent damage from corrosive chemicals. The installation of an electronic variable output control device may not be allowed in a corrosive environment. Electronic variable output control devices may not be installed in the same room with fluoride acid chemical feed equipment. Preventive measures such as adequate sealing and ventilation of chemical containers and solution tanks shall be taken to minimize the production of corrosive fumes from other kinds of chemical feed installations, including sodium hypochlorite. The installation of a separate chemical feed room or the installation of room or chemical feed system ventilation improvements may be required by the department where significant damage from corrosive fumes has been documented. NR 811.34(9)(9) Dehumidification or air conditioning. Dehumidification or air conditioning equipment shall be installed in any room where an electronic variable output control device will be installed and excessive moisture will be a concern.
/exec_review/admin_code/nr/800/811
true
administrativecode
/exec_review/admin_code/nr/800/811/iv/28/4/_1
Department of Natural Resources (NR)
Chs. NR 800- ; Environmental Protection – Water Supply
section
true