NR 811.232(1)(c)(c) A spare solution line shall be installed to provide redundancy and to facilitate the use of alternate chemicals. NR 811.232(1)(d)(d) Chemical feeders shall be interlocked with the plant system controls to shut down the chemical feed pump automatically when the raw water flow stops. NR 811.232(1)(e)(e) A sample line out to the intake shall be provided which will allow for collecting raw water samples unless the chemical control system will be shut off for periods sufficient to collect raw water samples at the shore well. NR 811.232(2)(2) The department may require pilot testing or demonstration studies of alternate intake treatment. Studies shall satisfy the requirements under s. NR 811.44. NR 811.232 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; renumbering of (1) to (4) made under s. 13.92 (4) (b) 1., Stats., Register November 2010 No. 659; CR 22-074: renum. (intro.), (1), (2), (3) to (1) (intro.), (a), (b), (c) and am. (1) (intro.), (c), cr. (1) (d), (2), renum. (4) to (1) (e) Register January 2024 No. 817, eff. 2-1-24. NR 811.24NR 811.24 General requirements. All water system related buildings shall be designed to maintain the sanitary quality of the water supply. Buildings subject to the requirements of this subchapter include surface water and groundwater water treatment plant buildings, structures and pumping stations, well pumphouses and enclosures, and booster pumping stations. Uses of the buildings shall be compatible with the protection of the water supply. NR 811.24 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.25(1)(1) Construction. All water system related buildings under s. NR 811.24 shall meet all of the following requirements: NR 811.25(1)(a)(a) Have adequate space for the installation of additional pumping units, water treatment equipment, chemical feed equipment, or controls, if needed, and for the safe servicing of all equipment. NR 811.25(1)(b)(b) Be durable, fire and weather resistant, and constructed in a manner to maximize sanitary protection of the water supply. NR 811.25(1)(c)(c) Be secure. Buildings shall have at least one outward opening door to the outside. All doors, windows, and hatches shall have locks. Any security alarms installed shall be connected to telemetry control and SCADA systems where such systems are used. NR 811.25(1)(d)(d) Be landscaped to conduct surface drainage away from the station and have a floor elevation at least 6 inches above the finished grade and at least 2 feet above the regional flood elevation as determined in s. NR 116.07 (4). Buildings shall be provided with year round dry land access. Below grade installations may be permitted only if the terrain at the site is such that a gravity drain system can be provided. Subsurface pits or pumprooms and inaccessible installations intended to house well heads, pumps, pump motors, or pump controls for pumping stations are prohibited except for below grade booster pumping stations as allowed per s. NR 811.80 (3) and (4). NR 811.25(1)(e)(e) Provide for all floors to drain so that floor runoff does not enter the treatment process or source water. Floors shall be sloped to a drain or sump. NR 811.25(1)(f)(f) Provide a suitable outlet for drainage water from pump glands so that the disposal of any drainage water is piped to waste or otherwise disposed of in a controlled manner. Pump gland drainage piping shall not be directly connected to a hub drain or a floor drain. NR 811.25(1)(h)(h) Be provided with at least one floor drain meeting the following requirements: NR 811.25(1)(h)1.1. Floor drains and hub drains shall be properly separated from a well. A floor or hub drain and associated piping accepting water from pump gland drainage, a pressure relief or control valve, a sampling faucet, or the floor shall be located no closer than 2 feet to the outer well casing. No building drain piping, except that piping leading to the aforementioned floor or hub drains, containing blackwater or graywater, may be located closer than 8 feet to the outer well casing. NR 811.25(1)(h)2.2. Floor drains and hub drains shall have a discharge location that complies with all of the following requirements: NR 811.25(1)(h)2.a.a. Floor drains and hub drains may be connected to a sanitary sewer where available if the building floor elevation is at least one foot above the rim elevation of the nearest upstream sanitary sewer manhole. If a sanitary sewer is available but a manhole is not located nearby or the manhole does not comply with the upstream location or the one foot requirement, the department may require installation of an additional manhole on the sanitary sewer main or on the sanitary building sewer. NR 811.25 NoteNote: The department recommends that the floor drains from chemical feed rooms discharge to a sanitary sewer whenever practicable.
NR 811.25(1)(h)2.b.b. Floor drains and hub drains may discharge to the ground surface if the building drain and building sewer piping will only carry water from the floor or hub drain, the discharge location shall be at least 25 feet from the pumphouse, the exterior invert of the building sewer pipe shall be at least 6 inches below the building floor elevation and the exterior pipe opening shall be covered with a corrosion resistant rodent screen. A greater distance may be required for drains of pump stations serving wells constructed in sand and gravel formations. The piping shall terminate in a location that will not allow backflow of surface water into the building. NR 811.25(1)(h)2.bm.bm. A floor drain or hub drain may be connected to a storm sewer where available if the building drain and building sewer piping will only carry water from the floor or hub drain and if the building floor elevation is at least one foot above the rim elevation of the nearest upstream storm sewer manhole. If a storm sewer is available but a manhole is not located nearby or the manhole does not comply with the upstream location or the one-foot requirement, the department may require installation of an additional manhole on the storm sewer main or on the building sewer discharge line. NR 811.25(1)(h)2.c.c. Floor drains and hub drains may discharge to a buried tank located a minimum of 50 feet from the well if the discharge to the building drain and building sewer piping will contain only water from pump gland drainage, a pressure relief or control valve, a sampling faucet or floor drainage. These buried tanks may not be installed unless approved by the department’s bureau of watershed management wastewater section prior to installation. Floor drains and hub drains may discharge to a POWTS holding component located a minimum of 200 feet from the well if the discharge will contain toilet, sink or other sanitary or domestic waste. These POWTS holding components may not be installed unless approved by the department of safety and professional services prior to installation. In either case the rim elevation of the access manhole to the tank shall be at least one foot below the building floor elevation and a high water alarm shall be installed for the tank in accordance with the requirements of s. SPS 383.43 (8) (e). NR 811.25(1)(h)3.3. The drain may be a trench drain system if the lowest elevation of any trench drain complies with subd. 2. a. Where trench drains are to be connected to a sanitary sewer and compliance with subd. 2. a. is not possible, a sump containing a sump pump shall be installed in the trench to discharge the trench water with a minimum 2 pipe diameter free air break over a hub drain. The top elevation of the hub drain shall be at least one foot above the elevation of the nearest upstream sanitary sewer manhole rim. Where trench drains will discharge to grade the exterior invert of the building sewer pipe shall be at least 6 inches below the lowest elevation of the trench drain and the exterior pipe opening shall be covered with a corrosion resistant rodent screen. NR 811.25(1)(h)4.4. Floor drains shall be constructed of department of safety and professional services approved plumbing materials. The building drain piping shall be constructed of cast iron or PVC piping within 10 feet of the outer well casing. NR 811.25(1)(i)(i) Pitless units shall be provided with a locked and vented watertight enclosure fastened watertight to a concrete floor. The enclosure shall be weather resistant, of sufficient size to accommodate all well appurtenances and electrical or auxiliary power connections and be accessible for year-round inspection, water sample collection, and water level data collection. Any enclosure vents shall be shielded from the elements and wind-blown debris and the vent openings shall be covered with 24-mesh corrosion resistant screens. Backfill material for slab-on-grade enclosures shall be compacted in lifts. Any slab-on-grade concrete floor shall have minimum dimensions of 4 feet by 4 feet by 6 inches thick and be provided with reinforcing. NR 811.25(1)(j)(j) A small, doghouse-type, enclosure may be installed over a well and abbreviated above grade pump discharge piping where chemical addition equipment or hydro-pneumatic pressure tank storage is located remote from the well. The department may waive portions of the building installation requirements for small enclosures. The enclosure shall be secured watertight to a concrete floor and allow for convenient access to the well, piping and any appurtenances. The enclosure shall be locked as applicable. If a floor drain will not be installed, the floor shall be sloped to drain toward the access door if one is provided. NR 811.25(2)(2) Equipment servicing. Pumping stations shall be provided with all of the following: NR 811.25(2)(a)(a) Crane-ways, hoist beams, eyebolts, or other facilities necessary for servicing or removal of pumps, motors, or other heavy equipment where appropriate. NR 811.25(2)(b)(b) Openings in floors, roofs or wherever needed for removal of heavy or bulky equipment. For well pumphouses, a secured roof hatch shall be located over the well. NR 811.25(3)(3) Stairways and ladders. Stairways or ladders shall be provided between all floors and in pits or compartments which are to be entered. NR 811.25(4)(4) Heating. Adequate heating shall be provided for the safe and efficient operation of the equipment. NR 811.25 NoteNote: In buildings not occupied by personnel, only enough heat need be provided to prevent freezing, unless higher temperatures are required for proper chemical addition or to allow water treatment and control equipment to function properly.
NR 811.25(5)(5) Ventilation. Ventilation for all pumping stations, pumphouses, and water treatment plant buildings is governed by applicable building codes. NR 811.25(6)(6) Dehumidification. A means for dehumidification shall be provided in pump rooms and in other water system related buildings where excess moisture could cause or is causing safety hazards or damage to equipment or piping. NR 811.25(7)(7) Lighting. All pumping stations, pumphouses, and water treatment plant buildings shall be provided with adequate interior and exterior lighting. The design of exterior lighting should promote security. NR 811.25(8)(8) Sanitary and other conveniences. All pumping stations, pumphouses, and water treatment plants shall be provided with potable water, lavatory, and toilet facilities except for unoccupied automatic stations or if such facilities are available elsewhere. All plumbing including fixtures, backflow protection, floor drains, hub drains, piping and their installation, testing, and maintenance shall conform to the requirements of chs. SPS 302, 305 and 381 to 384. NR 811.25(9)(9) Multipurpose buildings. Water supply buildings may be enclosed in or attached to buildings that serve multiple purposes such as a park building, garage, office, storage or restroom facility if the purposes for which the building are used are compatible with the protection of the water supply. In all cases the water supply facilities shall be separated by walls from the other building uses with access to the water supply facilities gained by separate locked doors and restricted to authorized water system personnel. The specific requirements for multipurpose buildings shall comply with subs. (1) to (8) where applicable. NR 811.25 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (1) (h) 2. c., 4., (8) made under s. 13.92 (4) (b) 6., 7., Stats., Register December 2011 No. 672; CR 22-074: cr. (1) (h) 2. bm. Register January 2024 No. 817, eff. 2-1-24. NR 811.26NR 811.26 Number of pumping units. All pumping stations for systems using either groundwater or surface water shall meet the following requirements: NR 811.26(1)(1) There shall be 2 or more pumping units, with each unit capable of supplying the peak demand. The department may approve exceptions under sub. (2), if additional pumping stations which can meet the peak demand are available or if the department determines that there will be a sufficient volume of storage available between pumping periods to allow for necessary repairs. Depending on the type and size of the water system, a sufficient volume of storage may include elevated storage, ground storage fitted with high-lift pumps and auxiliary power, and pressure tank storage. If only 2 units are provided, each unit shall be capable of supplying the peak demand. If more than 2 units are installed, the total number of units shall have sufficient capacity so that if any one pump is taken out of service, the remaining pumps are capable of supplying the peak demand. NR 811.26(2)(2) If no elevated storage is available and more than 50 living units are to be served, there shall be 2 or more wells or pumping units, each of which is capable of supplying the peak demand. An approved interconnection with another water system or a ground storage reservoir with high-lift pumps may be used in lieu of this requirement for other-than-municipal water systems. NR 811.26(3)(3) Have controls for proper alternation when 2 or more pumps are installed. NR 811.26 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.27NR 811.27 Auxiliary power. All municipal pumping stations, pumphouses, and water treatment plants shall have a standby auxiliary power source unless the department determines that there is sufficient pumping capacity with existing auxiliary power located at other water system facilities to provide at least an average day supply of water. Sufficient power shall be provided to operate pumps, treatment systems, chemical addition, control systems, and monitoring equipment. Auxiliary power for chemical addition, treatment, and monitoring equipment is not required if the treatment, chemical addition, control, and monitoring equipment is not necessary to meet the primary drinking water standards in ch. NR 809 or the continuous disinfection requirements of chs. NR 810 and 811. NR 811.27(1)(1) Power sources. Standby power may be provided by any of the following: NR 811.27(1)(a)(a) A dedicated on-site generator or engine. A dedicated on-site generator may be located inside or outside the building. Dedicated on-site engine-generator sets installed within the building shall be located in a separate room. Diesel fuel tanks shall be provided with secondary containment and interstitial leakage monitoring and the installation shall receive written approval from the department of safety and professional services or its authorized agent under ch. ATCP 93 prior to installation. All fuel lines shall be exposed above grade. Water lines to water cooled units shall be provided with backflow prevention in accordance with s. SPS 382.41. NR 811.27(1)(b)(b) A portable power source owned by the municipality and dedicated to the water supply facility operation. NR 811.27(1)(c)(c) A portable power source not owned by the municipality but only if the water system owner obtains a written agreement with the owner of any portable power source, including tractors or trailered engine-generator sets, that requires the water system owner to have primary access to the power source in an emergency and that allows the portable power source to be brought to the water system as required for testing. The portable power source shall be located in the community if practical. NR 811.27 NoteNote: The department recommends the use of water system owned dedicated on-site or portable engine-generator sets in all cases. It is recommended that the equipment necessary to convert natural gas fueled engines to propane be maintained on site in case the natural gas supply has to be shut off for any significant length of time. It is recommended that exterior engine-generator set installations be installed within a locked security fence.
NR 811.27(2)(2) Alternate prelubrication methods. The pump installation shall be provided with a prelubrication line with a valved bypass around the automatic control and backflow protection, if appropriate, in order to allow temporary continuous prelubrication, whenever automatic prelubrication of pump bearings is necessary and an auxiliary power supply is provided that will not provide power to the automatic prelubrication controls. NR 811.27 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (1) (a) made under s. 13.92 (4) (b) 6., 7., Stats., Register December 2011 No. 672; correction in (1) (a) made under s. 13.92 (4) (b) 7., Stats., Register October 2013 No. 694; CR 22-074: am. (1) (c) Register January 2024 No. 817, eff. 2-1-24. NR 811.28(1)(1) Suction or wet wells. Suction or wet wells, including installations where the pumps are installed on top of a reservoir, but excluding remote booster pumping installations shall: NR 811.28(1)(a)(a) Meet the applicable reservoir construction requirements of subch. IX. NR 811.28(1)(b)(b) Have all below grade metal pump cans, if installed, exposed in a basement or vault. NR 811.28(1)(c)(c) Have 2 pumping compartments or other means to allow the suction well to be taken out of service for inspection, maintenance, or repair. NR 811.28(2)(2) Suction lift. Suction lift shall be allowed only for distances of less than 15 feet and where provision is made for priming the pumps. Suction lift may not be permitted if buried piping carries the finished water. NR 811.28(3)(3) Priming. Prime water may not be of lesser sanitary quality than that of the water being pumped. Means shall be provided to prevent backflow. When an air-operated ejector is used, the screened intake shall draw clean air from a point at least 10 feet above the ground or other source of contamination, unless the air is filtered by apparatus approved by the department. Vacuum priming may be used. NR 811.28(4)(4) Automatic and remote controlled stations. All automatic stations shall be provided with automatic signaling equipment which will report pump on-off operation and the status of other important functions, such as intrusion alarms, to the main station. Pressure monitoring shall be included if a separate pressure zone is established. All remote controlled stations shall be electrically operated and controlled and shall be provided with reliable signaling equipment. NR 811.28 NoteNote: See subch. XI for booster pumping facilities in the distribution system.
NR 811.28(5)(a)(a) Valves. Pumps shall be adequately valved to permit satisfactory operation, maintenance and repair of the equipment. If foot valves are provided, they shall have a net valve area of at least 2.5 times the area of the suction pipe and shall be screened. Each pump shall have an automatically closing valve or check valve on the discharge side between the pump and shutoff valve. Devices such as motor controls, slow opening and closing check valves, or surge relief valves shall be installed where necessary to minimize pressure surges or water hammer. NR 811.28(5)(b)(b) Piping. Piping shall be designed to minimize friction losses and shall be protected against pressure surges or water hammer. Piping shall be supported, restrained, and buttressed as necessary. Where applicable, each pump shall have an individual suction line or manifolded lines that ensure similar hydraulic and operation conditions. Discharge piping exposed in buildings shall be ductile iron, copper, steel, stainless steel, or galvanized pipe. For other-than-municipal water systems, piping downstream of the control valve is subject to requirements under ch. SPS 383. The use of minimum schedule 80 PVC pipe meeting the requirements of SPS Table 384.30-7 is acceptable when the water to be carried in the piping can be documented as being aggressive to metal pipe or when necessary to be compatible with water treatment equipment and processes provided that the piping is properly restrained. All piping shall be certified to ANSI/NSF standard 61 dated March 15, 2022, which is incorporated by reference. NR 811.28 NoteNote: A copy of ANSI/NSF standard 61 dated March 15, 2022 is available for inspection at the Legislative Reference Bureau and may be obtained for personal use from NSF International, https://www.nsf.org/. NR 811.28(5)(c)(c) Gauges and meters. Each pump shall have a standard pressure gauge on its discharge line and have a compound pressure gauge on its suction line if suction pressures are expected to be encountered. Where suction or discharge headers are utilized, only one gauge is required on each header. In addition, the station shall have indicating, totalizing, and recording metering of the total water pumped. NR 811.28 NoteNote: Discharge pressure recording devices are recommended at the larger stations.
NR 811.28(5)(d)(d) Water seals. Water seals may not be supplied with water of a lesser sanitary quality than that of the water being pumped. Where pumps are sealed with potable water and are pumping water of lesser sanitary quality, the water supply to the seal shall: NR 811.28(5)(d)1.1. Be provided with a department of safety and professional services approved reduced principle backflow preventer or a break tank open to atmospheric pressure. NR 811.28(5)(d)2.2. Where a break tank is provided, have an air gap, at least 6 inches or 2 pipe diameters, whichever is greater, between the feeder line and the spill line of the tank. NR 811.28(6)(6) Painting of piping. In order to facilitate identification of piping in waterworks, pumping stations, pumphouses and, water treatment plants, it is recommended that the following color schemes be utilized for purposes of standardization: NR 811.28(6)(e)(e) For liquids or gases not listed above, a unique color scheme and labeling shall be used. In situations where 2 colors do not have sufficient contrast to easily differentiate between them, a 6 inch band of a contrasting color shall be painted on one pipe at approximately 30 inch intervals. The name of the liquid or gas should also be painted on the pipe. Arrows may be painted on the piping indicating the direction of flow. NR 811.28 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10; correction in (5) (b), (d) 1. made under s. 13.92 (4) (b) 6., 7., Stats., Register December 2011 No. 672; CR 22-074: am. (5) (b) Register January 2024 No. 817, eff. 2-1-24. NR 811.29NR 811.29 Pumping capacity requirements. Figure No. 1 located in the Appendix shall be used for determining minimum pump capacities for domestic service only, unless specific information is submitted to the department for review and the department approves the alternate pump capacities. When using Figure No. 1, the number of homes may be reduced by one-third for apartment units, condominium units, and manufactured or mobile homes. As an alternative, for apartment units, condominium units, and manufactured or mobile homes, the minimum pump capacity may be reduced to 1 gallon per minute per living unit. The department may require the water system owner to perform more detailed engineering studies to determine pump capacities for multiple uses, including domestic, commercial, and industrial usage and fire protection. NR 811.30NR 811.30 General pump, motor and wiring installation requirements. NR 811.30(1)(1) Installation location. All nonsubmersible pump motors and all electrical controls shall be located above grade and protected from flooding, except as allowed for below grade booster pumping stations in s. NR 811.80 (3). NR 811.30(2)(2) Motor, wiring and electrical controls. All exposed wires shall be encased along their entire length and otherwise installed in a manner to prevent contamination of the water supply. All motors, wiring, and electrical controls shall be installed in conformance with all applicable state and local electrical code requirements. NR 811.30 NoteNote: It is recommended that all pumps and motors be assessed during design to ensure that they will be energy efficient throughout their operational range and over their usable service life. It is recommended that all pump motors be provided with a recording watt meter.
NR 811.30 HistoryHistory: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10. NR 811.31NR 811.31 Line-shaft vertical turbine pumps. NR 811.31(1)(1) Pump bases. Line-shaft vertical turbine pump base installations shall meet the requirements of this subsection and as shown in Figure Nos. 2 and 3 in the Appendix: NR 811.31(1)(a)(a) Line-shaft vertical turbine pumps shall be supported by a concrete pump base which is installed to a height at least 12 inches above the pump station floor. NR 811.31(1)(b)(b) The protective grouted casing of wells shall extend a minimum of one inch above the concrete pump base. If there is also an inner ungrouted casing, the inner casing shall extend a minimum of one inch above the pump base and the protective grouted outer casing shall extend a minimum of 4 inches above the floor and shall be incorporated into the concrete pump base. For these installations, a steel ring shall be welded between the inner and protective casings.
/code/admin_code/nr/800/811
true
administrativecode
/code/admin_code/nr/800/811/iv/25/1/j
Department of Natural Resources (NR)
Chs. NR 800- ; Environmental Protection – Water Supply
administrativecode/NR 811.25(1)(j)
administrativecode/NR 811.25(1)(j)
section
true