This is the preview version of the Wisconsin State Legislature site.
Please see http://docs.legis.wisconsin.gov for the production version.
NR 810.46 NR 810.46Inactivation toolbox components.
NR 810.46(1)(1)Calculation of CT values.
NR 810.46(1)(a)(a) CT is the product of the disinfectant contact time (T, in minutes) and disinfectant concentration (C, in milligrams per liter). Water suppliers for systems with treatment credit for chlorine dioxide or ozone under sub. (2) or (3) shall calculate CT at least once each day, with both C and T measured during peak hourly flow as specified in s. NR 809.563 (1), Table R.
NR 810.46(1)(b) (b) Water suppliers for systems with several disinfection segments in sequence may calculate CT for each segment. In this section, “disinfection segment" means a treatment unit process with a measurable disinfectant residual level and a liquid volume. Under this approach, water suppliers for systems shall add the Cryptosporidium CT values in each segment to determine the total CT for the treatment plant.
NR 810.46(2) (2)CT values for chlorine dioxide and ozone.
NR 810.46(2)(a)(a) Public water systems receive the Cryptosporidium treatment credit for chlorine dioxide by meeting the corresponding chlorine dioxide CT values found in s. NR 810.56 for the applicable water temperature, as described in sub. (1).
NR 810.46(2)(b) (b) Systems receive the Cryptosporidium treatment credit for ozone by meeting the corresponding ozone CT values found in s. NR 810.61 for the applicable water temperature.
NR 810.46(3) (3)Site-specific study. The department may approve alternative chlorine dioxide or ozone CT values to those referenced in sub. (2) on a site-specific basis. The department shall base this approval on a site-specific study a water supplier for a system conducts that follows a department-approved protocol.
NR 810.46(4) (4)Ultraviolet light. Public water systems receive Cryptosporidium, Giardia lamblia, and virus treatment credits for ultraviolet (UV) light reactors by achieving the corresponding UV dose values shown in s. NR 810.62. Water suppliers for the systems shall validate and monitor UV reactors as described in pars. (b) and (c) to demonstrate that they are achieving a particular UV dose value for treatment credit.
NR 810.46(4)(a) (a) UV dose table. The treatment credits listed in the dose table in s. NR 810.62 are for UV light at a wavelength of 254 nm as produced by a low pressure mercury vapor lamp. To receive treatment credit for other lamp types, water suppliers for the systems shall demonstrate an equivalent germicidal dose through reactor validation testing, as described in par. (b). The UV dose values in this table are applicable only to post-filter applications of UV in filtered systems and to unfiltered systems.
NR 810.46(4)(b) (b) Reactor validation testing. Systems shall use UV reactors that have undergone validation testing to determine the operating conditions under which the reactor delivers the UV dose required in par. (a), also known as the validated operating conditions. These operating conditions shall include flow rate, UV intensity as measured by a UV sensor, and UV lamp status.
NR 810.46(4)(b)1. 1. When determining validated operating conditions, water suppliers for the systems shall account for the following factors: UV absorbance of the water; lamp fouling and aging; measurement uncertainty of on-line sensors; UV dose distributions arising from the velocity profiles through the reactor; failure of UV lamps or other critical system components; and inlet and outlet piping or channel configurations of the UV reactor.
NR 810.46(4)(b)2. 2. Validation testing shall include the following: Full scale testing of a reactor that conforms uniformly to the UV reactors used by the system and inactivation of a test microorganism whose dose response characteristics have been quantified with a low pressure mercury vapor lamp.
NR 810.46(4)(b)3. 3. The department may approve an alternative approach to validation testing.
NR 810.46(4)(c) (c) Reactor monitoring.
NR 810.46(4)(c)1.1. Water suppliers for the systems shall monitor their UV reactors to determine if the reactors are operating within validated conditions, as determined under par. (b). This monitoring shall include UV intensity as measured by a UV sensor, flow rate, lamp status, and other parameters the department designates based on UV reactor operation. Water suppliers for the systems shall verify the calibration of UV sensors and shall recalibrate sensors in accordance with a protocol the department approves.
NR 810.46(4)(c)2. 2. To receive treatment credit for UV light, systems shall treat at least 99.9% of the water delivered to the public during each month by UV reactors operating within validated conditions for the required UV dose, as described in pars. (a) and (b). Systems shall demonstrate compliance with this condition by the monitoring required under subd. 1.
NR 810.47 NR 810.47CT table for giardia when using free chlorine at 0.5 °C or lower.
NR 810.47 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.48 NR 810.48CT table for giardia when using free chlorine at 5 °C.
NR 810.48 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.49 NR 810.49CT table for giardia when using free chlorine at 10 °C.
NR 810.49 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.50 NR 810.50CT table for giardia when using free chlorine at 15 °C.
NR 810.50 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.51 NR 810.51CT table for giardia when using free chlorine at 20 °C.
NR 810.51 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.52 NR 810.52CT table for giardia when using free chlorine at 25 °C.
NR 810.52 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.53 NR 810.53CT table for viruses when using free chlorine. - See PDF for table PDF
NR 810.53 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.54 NR 810.54CT table for Giardia lamblia when using chlorine dioxide. - See PDF for table PDF
NR 810.54 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.55 NR 810.55CT table for viruses when using chlorine dioxide. - See PDF for table PDF
NR 810.55 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.56 NR 810.56CT table for Cryptosporidium when using chlorine dioxide. 1 - See PDF for table PDF
1Systems may use this equation to determine log credit between the indicated values: Log credit = (0.001506 × (1.09116)Temp) × CT.
NR 810.56 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.57 NR 810.57CT table for Giardia lamblia when using chloramines. - See PDF for table PDF
NR 810.57 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.58 NR 810.58CT table for viruses when using chloramines. - See PDF for table PDF
NR 810.58 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.59 NR 810.59CT table for Giardia lamblia when using ozone. - See PDF for table PDF
NR 810.59 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.60 NR 810.60CT table for viruses when using ozone. - See PDF for table PDF
NR 810.60 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.61 NR 810.61CT table for Cryptosporidium when using ozone. 1 - See PDF for table PDF
1Systems may use this equation to determine log credit between the indicated values: Log credit = (0.0397 × (1.09757)Temp) × CT.
NR 810.61 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
NR 810.62 NR 810.62UV dose table for Cryptosporidium, Giardia lamblia, and viruses. - See PDF for table PDF
NR 810.62 History History: CR 09-073: cr. Register November 2010 No. 659, eff. 12-1-10.
Loading...
Loading...
Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.