This is the preview version of the Wisconsin State Legislature site.
Please see http://docs.legis.wisconsin.gov for the production version.
NR 661.1035(3)(d)7.b. b. Temperature of the coolant fluid exiting the condenser is more than 6°C above the design average coolant fluid temperature at the condenser outlet established as a requirement under sub. (2) (d) 3. e.
NR 661.1035(3)(d)8. 8. For a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly on-site in the control device and complies with s. NR 661.1033 (6) (b) 7. a., period when the organic compound concentration level or readings of organic compounds in the exhaust vent stream from the carbon bed are more than 20 percent greater than the design exhaust vent stream organic compound concentration level established as a requirement under sub. (2) (d) 3. f.
NR 661.1035(3)(d)9. 9. For a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly on-site in the control device and complies with s. NR 661.1033 (6) (b) 7. b., period when the vent stream continues to flow through the control device beyond the predetermined carbon bed regeneration time established as a requirement under sub. (2) (d) 3. f.
NR 661.1035(3)(e) (e) Explanation for each period recorded under par. (d) of the cause for control device operating parameter exceeding the design value and the measures implemented to correct the control device operation.
NR 661.1035(3)(f) (f) For a carbon adsorption system operated subject to requirements specified in s. NR 661.1033 (7) or (8) (b), the date when existing carbon in the control device is replaced with fresh carbon.
NR 661.1035(3)(g) (g) For a carbon adsorption system operated subject to requirements specified in s. NR 661.1033 (8) (a), a log that records all of the following:
NR 661.1035(3)(g)1. 1. Date and time when control device is monitored for carbon breakthrough and the monitoring device reading.
NR 661.1035(3)(g)2. 2. Date when existing carbon in the control device is replaced with fresh carbon.
NR 661.1035(3)(h) (h) Date of each control device startup and shutdown.
NR 661.1035(3)(i) (i) A remanufacturer or other person that stores or treats the hazardous secondary material designating any components of a closed-vent system as unsafe to monitor pursuant to s. NR 661.1033 (15) shall record in a log that is kept at the facility the identification of closed-vent system components that are designated as unsafe to monitor in accordance with the requirements under s. NR 661.1033 (15), an explanation for each closed-vent system component stating why the closed-vent system component is unsafe to monitor, and the plan for monitoring each closed-vent system component.
NR 661.1035(3)(j) (j) When each leak is detected as specified in s. NR 661.1033 (12), all of the following information shall be recorded:
NR 661.1035(3)(j)1. 1. The instrument identification number, the closed-vent system component identification number, and the operator name, initials, or identification number.
NR 661.1035(3)(j)2. 2. Date the leak was detected and the date of first attempt to repair the leak.
NR 661.1035(3)(j)3. 3. Date of successful repair of the leak.
NR 661.1035(3)(j)4. 4. Maximum instrument reading measured by Method 21 in appendix A of 40 CFR part 60, incorporated by reference in s. NR 660.11, after it is successfully repaired or determined to be nonrepairable.
NR 661.1035(3)(j)5. 5. The words “Repair delayed” and the reason for the delay if the leak was not repaired within 15 calendar days after discovery of the leak. Documentation of the delay may include:
NR 661.1035(3)(j)5.a. a. The remanufacturer or other person that stores or treats the hazardous secondary material may develop a written procedure that identifies the conditions that justify a delay of repair. In such cases, reasons for delay of repair may be documented by citing the relevant sections of the written procedure.
NR 661.1035(3)(j)5.b. b. If delay of repair was caused by depletion of stocked parts, the remanufacturer or other person that stores or treats the hazardous secondary material shall document that the spare parts were sufficiently stocked on-site before depletion and the reason for depletion.
NR 661.1035(4) (4) Records of the monitoring, operating, and inspection information required under sub. (3) (c) to (j) shall be maintained by the remanufacturer or other person for at least 3 years following the date of each occurrence, measurement, maintenance, corrective action, or record.
NR 661.1035(5) (5) For a control device other than a thermal vapor incinerator, catalytic vapor incinerator, flare, boiler, process heater, condenser, or carbon adsorption system, the remanufacturer or other person shall record monitoring and inspection information indicating proper operation and maintenance of the control device in the facility operating record.
NR 661.1035(6) (6) Up-to-date information and data used to determine whether or not a process vent is subject to the requirements in s. NR 661.1032 including supporting documentation as required by s. NR 661.1034 (4) (b) when application of the knowledge of the nature of the hazardous secondary material stream or the process by which it was produced is used, shall be recorded by the remanufacturer or other person in a log that is kept at the facility.
NR 661.1035 History History: CR 19-082: cr. Register August 2020 No. 776, eff. 9-1-20; correction in (2) (d) 3. made under s. 35.17, Stats., Register August 2020 No. 776; correction in (2) (a) made under s. 13.92 (4) (b) 7., Stats., Register April 2021 No. 784.
subch. BB of ch. NR 661 Subchapter BB — Air Emission Standards for Equipment Leaks
NR 661.1050 NR 661.1050Applicability. The regulations in this subchapter apply to equipment that contains hazardous secondary material excluded under the remanufacturing exclusion under s. NR 661.0004 (1) (za), unless the equipment operations are subject to the requirements of an applicable Clean Air Act regulation codified under 40 CFR part 60, 61, or 63, or subject to ch. NR 440, subchs. III and IV of ch. NR 446, or chs. NR 447 to 469.
NR 661.1050 History History: CR 19-082: cr. Register August 2020 No. 776, eff. 9-1-20; correction in numbering made under s. 13.92 (4) (b) 1., Stats., and correction made under s. 35.17, Stats., Register August 2020 No. 776; correction made under ss. 13.92 (4) (b) 7. and 35.17, Stats., Register April 2021 No. 784.
NR 661.1051 NR 661.1051Definitions. As used in this subchapter, all terms shall have the meaning given in s. NR 661.1031, ch. 291, Stats., and chs. NR 660 to 666.
NR 661.1051 History History: CR 19-082: cr. Register August 2020 No. 776, eff. 9-1-20.
NR 661.1052 NR 661.1052Standards: pumps in light liquid service.
NR 661.1052(1)(a) (a) Except as provided in subs. (4) to (6), the remanufacturer or other person shall monitor each pump in light liquid service monthly to detect leaks by the methods specified in s. NR 661.1063 (2).
NR 661.1052(1)(b) (b) The remanufacturer or other person shall check each pump in light liquid service by visual inspection each calendar week for indications of liquids dripping from the pump seal.
NR 661.1052(2)(a) (a) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.
NR 661.1052(2)(b) (b) If there are indications of liquids dripping from the pump seal, a leak is detected.
NR 661.1052(3)(a) (a) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in s. NR 661.1059.
NR 661.1052(3)(b) (b) A first attempt at repair, such as tightening the packing gland, shall be made no later than 5 calendar days after each leak is detected.
NR 661.1052(4) (4) Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements under sub. (1), provided all of the following requirements are met:
NR 661.1052(4)(a) (a) Each dual mechanical seal system shall be one of the following:
NR 661.1052(4)(a)1. 1. Operated with the barrier fluid at a pressure that is at all times greater than the pump stuffing box pressure.
NR 661.1052(4)(a)2. 2. Equipped with a barrier fluid degassing reservoir that is connected by a closed-vent system to a control device that complies with the requirements specified in s. NR 661.1060.
NR 661.1052(4)(a)3. 3. Equipped with a system that purges the barrier fluid into a hazardous secondary material stream with no detectable emissions to the atmosphere.
NR 661.1052(4)(b) (b) The barrier fluid system may not be a hazardous secondary material with organic concentrations 10 percent or greater by weight.
NR 661.1052(4)(c) (c) Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.
NR 661.1052(4)(d) (d) Each pump shall be checked the remanufacturer or other person by visual inspection, each calendar week, for indications of liquids dripping from the pump seals.
NR 661.1052(4)(e)1.1. Each sensor as described in par. (c) shall be checked by the remanufacturer or other person daily or be equipped with an audible alarm that shall be checked monthly to ensure that it is functioning properly.
NR 661.1052(4)(e)2. 2. A remanufacturer or other person that stores or treats the hazardous secondary material shall determine, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.
NR 661.1052(4)(f)1.1. If there are indications of liquids dripping from the pump seal or the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion determined in par. (e) 2., a leak is detected.
NR 661.1052(4)(f)2. 2. When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in s. NR 661.1059.
NR 661.1052(4)(f)3. 3. A first attempt at repair, such as relapping the seal, shall be made no later than 5 calendar days after each leak is detected.
NR 661.1052(5) (5) Any pump that is designated, as described in s. NR 661.1064 (7) (b), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements under subs. (1), (3), and (4) if the pump meets all of the following requirements:
NR 661.1052(5)(a) (a) Has no externally actuated shaft penetrating the pump housing.
NR 661.1052(5)(b) (b) Operates with no detectable emissions as indicated by an instrument reading of less than 500 ppm above background as measured by the methods specified in s. NR 661.1063 (3).
NR 661.1052(5)(c) (c) Is tested for compliance with par. (b) initially upon designation, annually, and at other times as requested by the department.
NR 661.1052(6) (6) If any pump is equipped with a closed-vent system capable of capturing and transporting any leakage from the seal or seals to a control device that complies with the requirements specified in s. NR 661.1060, it is exempt from the requirements specified in subs. (1) to (5).
NR 661.1052 History History: CR 19-082: cr. Register August 2020 No. 776, eff. 9-1-20.
NR 661.1053 NR 661.1053Standards: compressors.
NR 661.1053(1)(1)Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of total organic emissions to the atmosphere, except as provided in subs. (8) and (9).
NR 661.1053(2) (2) Each compressor seal system as required under sub. (1) shall meet one of the following conditions:
NR 661.1053(2)(a) (a) Operate with the barrier fluid at a pressure that is at all times greater than the compressor stuffing box pressure.
NR 661.1053(2)(b) (b) Be equipped with a barrier fluid system that is connected by a closed-vent system to a control device that complies with the requirements specified in s. NR 661.1060.
NR 661.1053(2)(c) (c) Be equipped with a system that purges the barrier fluid into a hazardous secondary material stream with no detectable emissions to atmosphere.
NR 661.1053(3) (3) The barrier fluid may not be a hazardous secondary material with organic concentrations 10 percent or greater by weight.
NR 661.1053(4) (4) Each barrier fluid system as described in subs. (1) to (3) shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both.
NR 661.1053(5)(a) (a) Each sensor as required in sub. (4) shall be checked by the remanufacturer or other person daily or shall be equipped with an audible alarm that shall be checked monthly to ensure that it is functioning properly unless the compressor is located within the boundary of an unmanned plant site, in which case the sensor shall be checked daily.
NR 661.1053(5)(b) (b) The remanufacturer or other person that stores or treats the hazardous secondary material shall determine, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.
NR 661.1053(6) (6) If the sensor indicates failure of the seal system, the barrier fluid system, or both based on the criterion determined under sub. (5) (b), a leak is detected.
NR 661.1053(7)(a) (a) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided under s. NR 661.1059.
NR 661.1053(7)(b) (b) A first attempt at repair, such as tightening the packing gland, shall be made no later than 5 calendar days after each leak is detected.
NR 661.1053(8) (8) A compressor is exempt from the requirements under subs. (1) and (2) if it is equipped with a closed-vent system capable of capturing and transporting any leakage from the seal to a control device that complies with the requirements specified in s. NR 661.1060, except as provided in sub. (9).
NR 661.1053(9) (9) Any compressor that is designated, as described in s. NR 661.1064 (7) (b), for no detectable emissions as indicated by an instrument reading of less than 500 ppm above background is exempt from subs. (1) to (8) if the compressor meets all of the following requirements:
NR 661.1053(9)(a) (a) Is determined to be operating with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in s. NR 661.1063 (3).
NR 661.1053(9)(b) (b) Is tested for compliance with par. (a) initially upon designation, annually, and at other times as requested by the department.
NR 661.1053 History History: CR 19-082: cr. Register August 2020 No. 776, eff. 9-1-20.
NR 661.1054 NR 661.1054Standards: pressure relief devices in gas/vapor service.
NR 661.1054(1)(1)Except during pressure releases, each pressure relief device in gas or vapor service shall be operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in s. NR 661.1063 (3).
NR 661.1054(2)(a) (a) After each pressure release, the pressure relief device shall be returned to a condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in s. NR 661.1059.
NR 661.1054(2)(b) (b) No later than 5 calendar days after the pressure release, the pressure relief device shall be monitored to confirm the condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as measured by the method specified in s. NR 661.1063 (3).
NR 661.1054(3) (3) Any pressure relief device that is equipped with a closed-vent system capable of capturing and transporting leakage from the pressure relief device to a control device as described in s. NR 661.1060 is exempt from the requirements under subs. (1) and (2).
NR 661.1054 History History: CR 19-082: cr. Register August 2020 No. 776, eff. 9-1-20.
NR 661.1055 NR 661.1055Standards: sampling connection systems.
NR 661.1055(1)(1)Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent system. This system shall collect the sample purge for return to the process or for routing to the appropriate treatment system. Gases displaced during filling of the sample container are not required to be collected or captured.
NR 661.1055(2) (2) Each closed-purge, closed-loop, or closed-vent system as required in sub. (1) shall meet one of the following requirements:
NR 661.1055(2)(a) (a) Return the purged process fluid directly to the process line.
Loading...
Loading...
Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.