NR 465.48(9)(b)2.2. If any bypass line is opened, you shall include a description of why the bypass line was opened and the length of time it remained open in the semiannual compliance reports required in s. NR 465.45 (2). NR 465.48(9)(c)(c) Thermal oxidizers and catalytic oxidizers. If you are using a thermal oxidizer or catalytic oxidizer as an add-on control device, including those used with concentrators or with carbon adsorbers to treat desorbed concentrate streams, you shall comply with the requirements in subds. 1. to 3. NR 465.48(9)(c)1.1. For a thermal oxidizer, install a gas temperature monitor in the firebox of the thermal oxidizer or in the duct immediately downstream of the firebox before any substantial heat exchange occurs. NR 465.48(9)(c)2.2. For a catalytic oxidizer, install gas temperature monitors upstream or downstream or both of the catalyst bed as required in sub. (8) (b). NR 465.48(9)(c)3.3. For all thermal oxidizers and catalytic oxidizers, you shall meet the requirements in par. (a) and subd. 3. a. to e. for each gas temperature monitoring device. NR 465.48(9)(c)3.a.a. Locate the temperature sensor in a position that provides a representative temperature. NR 465.48(9)(c)3.b.b. Use a temperature sensor with a measurement sensitivity of 5°F or 1.0% of the temperature value, whichever is larger. NR 465.48(9)(c)3.c.c. Before using the sensor for the first time or when relocating or replacing the sensor, perform a validation check by comparing the sensor output to a calibrated temperature measurement device or by comparing the sensor output to a simulated temperature. NR 465.48(9)(c)3.d.d. Conduct an accuracy audit every quarter and after every deviation. Accuracy audit methods include comparisons of sensor output to redundant temperature sensors, to calibrated temperature measurement devices, or to temperature simulation devices. NR 465.48(9)(c)3.e.e. Conduct a visual inspection of each sensor every quarter if redundant temperature sensors are not used. NR 465.48(9)(d)(d) Regenerative carbon adsorbers. If you are using a regenerative carbon adsorber as an add-on control device, you shall monitor the total regeneration desorbing gas mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with par. (a) 3. to 5. and subds. 1. to 3. NR 465.48(9)(d)1.1. The regeneration desorbing gas mass flow monitor shall be an integrating device having a measurement sensitivity of plus or minus 10% capable of recording the total regeneration desorbing gas mass flow for each regeneration cycle. NR 465.48(9)(d)2.2. The carbon bed temperature monitor shall be capable of recording the temperature within 15 minutes of completing any carbon bed cooling cycle. NR 465.48(9)(d)3.3. For all regenerative carbon adsorbers, you shall meet the requirements in par. (c) 3. a. to e. for each temperature monitoring device. NR 465.48(9)(e)(e) Condensers. If you are using a condenser, you shall monitor the condenser outlet, or product side, gas temperature and comply with par. (a) and subds. 1. and 2. NR 465.48(9)(e)1.1. The temperature monitor shall provide a gas temperature record at least once every 15 minutes. NR 465.48(9)(f)(f) Concentrators. If you are using a concentrator, such as a zeolite wheel or rotary carbon bed concentrator, you shall comply with the requirements in subds. 1. and 2. NR 465.48(9)(f)1.1. You shall install a temperature monitor in the desorption gas stream. The temperature monitor shall meet the requirements in pars. (a) and (c) 3. NR 465.48(9)(f)2.2. You shall install a device to monitor pressure drop across the zeolite wheel or rotary carbon bed. The pressure monitoring device shall meet the requirements in pars. (a) and (g) 2. NR 465.48(9)(g)(g) Emission capture systems. The capture system monitoring system shall comply with the applicable requirements in subds. 1. and 2. If the source is a magnet wire coating machine, you may use the procedures in section 2.0 of 40 CFR part 63, Subpart MMMM, Appendix A, incorporated by reference in s. NR 484.04 (24g), as an alternative. NR 465.48(9)(g)1.1. For each flow measurement device, you shall meet the requirements in par. (a) and the requirements in subd. 1. a. to g. NR 465.48(9)(g)1.a.a. Locate a flow sensor in a position that provides a representative flow measurement in the duct from each capture device in the emission capture system to the add-on control device. NR 465.48(9)(g)1.c.c. Perform an initial sensor calibration in accordance with the manufacturer’s requirements. NR 465.48(9)(g)1.d.d. Perform a validation check before initial use or upon relocation or replacement of a sensor. Validation checks include comparison of sensor values with electronic signal simulations or via relative accuracy testing. NR 465.48(9)(g)1.e.e. Conduct an accuracy audit every quarter and after every deviation. Accuracy audit methods include comparisons of sensor values with electronic signal simulations or via relative accuracy testing. NR 465.48(9)(g)1.g.g. Perform visual inspections of the sensor system quarterly if there is no redundant sensor. NR 465.48(9)(g)2.2. For each pressure drop measurement device, you shall comply with the requirements in par. (a) and the requirements in subd. 2. a. to g. NR 465.48(9)(g)2.a.a. Locate the pressure sensor in or as close to a position that provides a representative measurement of the pressure drop across each opening you are monitoring. NR 465.48(9)(g)2.b.b. Use a pressure sensor with an accuracy of at least 0.5 inches of water column or 5% of the measured value, whichever is larger. NR 465.48(9)(g)2.c.c. Perform an initial calibration of the sensor according to the manufacturer’s requirements. NR 465.48(9)(g)2.d.d. Conduct a validation check before initial operation or upon relocation or replacement of a sensor. Validation checks include comparison of sensor values to calibrated pressure measurement devices or to pressure simulation using calibrated pressure sources. NR 465.48(9)(g)2.e.e. Conduct accuracy audits every quarter and after every deviation. Accuracy audits include comparison of sensor values to calibrated pressure measurement devices or to pressure simulation using calibrated pressure sources. NR 465.48(9)(g)2.f.f. Perform monthly leak checks on pressure connections. A pressure of at least 1.0 inches of water column to the connection shall yield a stable sensor result for at least 15 seconds. NR 465.48(9)(g)2.g.g. Perform a visual inspection of the sensor at least monthly if there is no redundant sensor. Table 1
Operating Limits if Using the Emission Rate With Add-On Controls Option in s. NR 465.43 (2) (c) If you are required to comply with operating limits by s. NR 465.43 (3) (b), you shall comply with the applicable operating limits in the following table. Table 2
Default Organic HAP Mass Fraction for Solvents and Solvent Blends
You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer’s formulation data and which match either the solvent blend name or the chemical abstract series (CAS) number. If a solvent blend matches both the name and CAS number for an entry, that entry’s organic HAP mass fraction shall be used for that solvent blend. Otherwise, use the organic HAP mass fraction for the entry matching either the solvent blend name or CAS number, or use the organic HAP mass fraction from Table 3 of this subchapter if neither the name or CAS number match.
Table 3
Default Organic HAP Mass Fraction for Petroleum Solvent Groups a
You may use the mass fraction values in the following table for solvent blends for which you do not have test data or manufacturer’s formulation data.
NR 465.48 HistoryHistory: CR 05-040: cr. Register February 2006 No. 602, eff. 3-1-06.
/code/admin_code/nr/400/465
true
administrativecode
/code/admin_code/nr/400/465/v/48/9/g/2
Department of Natural Resources (NR)
Chs. NR 400-499; Environmental Protection – Air Pollution Control
administrativecode/NR 465.48(9)(g)2.
administrativecode/NR 465.48(9)(g)2.
section
true