NR 440.74(2)(b)9.9. “F” means the VOC emission capture efficiency of the vapor capture system achieved for the duration of the emission test, expressed as a fraction. NR 440.74(2)(b)10.10. “FV” means the average inward face velocity across all natural draft openings in a total enclosure, in meters per hour. NR 440.74(2)(b)11.11. “Hv” means the individual carbon absorber vessel (v) efficiency achieved for the duration of the emission test, expressed as a fraction. NR 440.74(2)(b)12.12. “Hsys” means the carbon adsorption system efficiency calculated when each absorber vessel has an individual exhaust stack. NR 440.74(2)(b)13.13. “Mci” means the total mass (kg) of each coating (i) applied to the substrate at an affected coating operation during a nominal 1-month period as determined from facility records. NR 440.74(2)(b)14.14. “Mr” means the total mass (kg) of VOC recovered for a nominal 1-month period. NR 440.74(2)(b)15.15. “Qaj” means the volumetric flow rate of each gas stream (i) exiting the emission control device, in dry standard cubic meters per hour when Method 18 or 25 is used to measure VOC concentration or in standard cubic meters per hour (wet basis) when Method 25A is used to measure VOC concentration. NR 440.74(2)(b)16.16. “Qbi” means the volumetric flow rate of each gas stream (i) entering the emission control device, in dry standard cubic meters per hour when Method 18 or 25 is used to measure VOC concentration or in standard cubic meters per hour (wet basis) when Method 25A is used to measure VOC concentration. NR 440.74(2)(b)17.17. “Qdi” means the volumetric flow rate of each gas stream (i) entering the emission control device from the affected coating operation, in dry standard cubic meters per hour when Method 18 or 25 is used to measure VOC concentration or in standard cubic meters per hour (wet basis) when Method 25A is used to measure VOC concentration. NR 440.74(2)(b)18.18. “Qfk” means the volumetric flow rate of each uncontrolled gas stream (k) emitted directly to the atmosphere from the affected coating operation, in dry standard cubic meters per hour when Method 18 or 25 is used to measure VOC concentration or in standard cubic meters per hour (wet basis) when Method 25A is used to measure VOC concentration. NR 440.74(2)(b)19.19. “Qgv” means the volumetric flow rate of the gas stream entering each individual carbon adsorber vessel (v), in dry standard cubic meters per hour when Method 18 or 25 is used to measure VOC concentration or in standard cubic meters per hour (wet basis) when Method 25A is used to measure VOC concentration. For purposes of calculating the efficiency of the individual adsorber vessel, the value of Qgv can be assumed to equal the value of Qgv measured for that adsorber vessel. NR 440.74(2)(b)20.20. “Qhv” means the volumetric flow rate of the gas stream exiting each individual carbon adsorber vessel (v), in dry standard cubic meters per hour when Method 18 or 25 is used to measure VOC concentration or in standard cubic meters per hour (wet basis) when Method 25A is used to measure VOC concentration. NR 440.74(2)(b)21.21. “Qin i” means the volumetric flow rate of each gas stream (i) entering the total enclosure through a forced makeup air duct, in standard cubic meters per hour (wet basis). NR 440.74(2)(b)22.22. “Qout j” means the volumetric flow rate of each gas stream (j) exiting the total enclosure through an exhaust duct or hood, in standard cubic meters per hour (wet basis). NR 440.74(2)(b)23.23. “R” means the overall VOC emission reduction achieved for the duration of the emission test, expressed as a fraction. NR 440.74(2)(b)24.24. “RSi” means the total mass (kg) of VOC retained on the coated substrate after oven drying or contained in waste coating for a given combination of coating and substrate. NR 440.74(2)(b)25.25. “Woi” means the weight fraction of VOC in each coating (i) applied at an affected coating operation during a nominal 1-month period as determined by Method 24. NR 440.74(2)(c)(c) Tables 1A and 1B present a cross reference of the affected facility status and the relevant subsections of the regulation.
a This table is presented for the convenience of the user and is not intended to supersede the language of the regulation. For the details of the requirements, refer to the text of the regulation.
b Refer to Table 1B to determine which paragraphs of subs. (5), (6) and (8) correspond to each compliance provision (sub. (4)).
a CA denotes carbon adsorber; CO denotes condenser; TI denotes thermal incinerator; CI denotes catalytic incinerator; PE denotes partial enclosure; TE denotes total enclosure
NR 440.74(3)(a)(a) Each owner or operator of an affected facility that is subject to the requirements of this section shall comply with the emissions limitations in this subsection on and after the date on which the initial performance test required by s. NR 440.08 is completed, but not later than 60 days after achieving the maximum production rate at which the affected facility will be operated or 180 days after initial startup, whichever dates comes first. NR 440.74(3)(b)(b) For the coating operation, each owner or operator of an affected facility shall either: NR 440.74(3)(b)1.1. Reduce VOC emissions to the atmosphere from the coating operation by at least 90% (“emission reduction” standard); or NR 440.74(3)(b)2.2. Install, operate and maintain a total enclosure around the coating operation and vent the captured VOC emissions from the total enclosure to a control device that is at least 95% efficient (alternative standard). NR 440.74(3)(c)(c) For the onsite coating mix preparation equipment of an affected facility, the owner or operator shall comply with the following requirements, as applicable: NR 440.74(3)(c)1.1. For an affected facility that has concurrent construction of a control device and uses at least 130 Mg of VOC per 12-month period, the owner or operator shall install, operate and maintain a cover on each piece of affected coating mix preparation equipment and vent VOC emissions from the covered mix equipment to a 95% efficient control device while preparation of the coating is taking place within the vessel. NR 440.74(3)(c)2.2. For an affected facility that does not have concurrent construction of a control device but uses at least 130 Mg of VOC per 12-month period, the owner or operator shall either: NR 440.74(3)(c)2.a.a. Install, operate and maintain a cover on each piece of affected coating mix preparation equipment; or NR 440.74(3)(c)2.b.b. Install, operate and maintain a cover on each piece of affected coating mix preparation equipment and vent VOC emissions to a VOC control device. NR 440.74(3)(c)3.3. For an affected facility that uses at least 95 Mg but less than 130 Mg of VOC per 12-month period, the owner or operator shall either: NR 440.74(3)(c)3.a.a. Install, operate and maintain a cover on each piece of affected coating mix preparation equipment; or NR 440.74(3)(c)3.b.b. Install, operate and maintain a cover on each piece of affected coating mix preparation equipment and vent VOC emissions to a VOC control device. NR 440.74(4)(a)(a) To demonstrate compliance with the emission reduction standard for coating operations specified in sub. (3) (b) 1., the owner or operator of the affected facility shall use one of the following methods. NR 440.74(4)(a)1.1. For coating operations not using carbon adsorption beds with individual exhausts the following gaseous emission test method is applicable when the emissions from any affected coating operation are controlled by a control device other than a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel. The owner or operator using this method shall comply with the following procedures: NR 440.74(4)(a)1.a.a. Construct the vapor capture system and control device so that all gaseous volumetric flow rates and total VOC emissions can be accurately determined by the applicable test methods and procedures specified in sub. (6) (b) to (g); NR 440.74(4)(a)1.b.b. Determine capture efficiency from the coating operation by capturing, venting and measuring all VOC emissions from the coating operation. During a performance test, the owner or operator of an affected coating operation located in an area with other sources of VOC shall isolate the coating operation emissions from all other sources of VOC by one of the following methods: 1) Build a temporary enclosure, as defined in sub. (2) (a) and conforming to the requirements of par. (b) 1., around the affected coating operation. The temporary enclosure shall be constructed and ventilated, through stacks suitable for testing, so that it has minimal impact on performance of the capture system; or
2) Shut down all other sources of VOC and continue to exhaust fugitive emissions from the affected coating operation through any building ventilation system and other room exhausts such as those on drying ovens. All such ventilation air shall be vented through stacks suitable for testing because the VOC content in each shall be determined.
NR 440.74(4)(a)1.c.c. Operate the emission control device with all emission sources connected and operating. NR 440.74(4)(a)1.f.f. For each affected coating operation subject to sub. (3) (b) 1. (emission reduction standard for coating operations), compliance is demonstrated if the product of (E) × (F) is equal to or greater than 0.90. NR 440.74(4)(a)2.2. For coating operations using carbon adsorption beds with individual exhausts the following gaseous emission test method is applicable when emissions from any affected coating operation are controlled by a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel. The owner or operator using this method shall comply with the following procedures: NR 440.74(4)(a)2.a.a. Construct the vapor capture system and control device so that each volumetric flow rate and the total VOC emissions can be accurately determined by the applicable test methods and procedures specified in sub. (6) (b) to (g); NR 440.74(4)(a)2.b.b. Assure that all VOC emissions from the coating operation are segregated from other VOC sources and that the emissions can be captured for measurement, as described in sub. (4) (a) 1. b. 1) and 2); NR 440.74(4)(a)2.c.c. Operate the emission control device with all emission sources connected and operating; NR 440.74(4)(a)2.d.d. Determine the efficiency (Hv) of each individual adsorber vessel (v) using Equation 3: NR 440.74(4)(a)2.e.e. Determine the efficiency of the carbon adsorption system (Hsys) by computing the average efficiency of the adsorber vessels as weighted by the volumetric flow rate (Qhv) of each individual adsorber vessel (v) using Equation 4: NR 440.74(4)(a)2.f.f. Determine the efficiency (F) of the vapor capture system using Equation (2). NR 440.74(4)(a)2.g.g. For each affected coating operation subject to sub. (3) (b) 1. (emission reduction standard for coating operations), compliance is demonstrated if the product of (Hsys) × (F) is equal to or greater than 0.90. NR 440.74(4)(a)3.3. The monthly liquid material balance method can be used only when a VOC recovery device controls only those emissions from one affected coating operation. It may not be used if the VOC recovery device controls emissions from any other VOC emission sources. When demonstrating compliance by this method, s. NR 440.08 (6) does not apply. The owner or operator using this method shall comply with the following procedures to determine the VOC emission reduction for each nominal 1-month period: NR 440.74(4)(a)3.a.a. Measure the amount of coating applied at the coating applicator. This quantity shall be determined at a time and location in the process after all ingredients, including any dilution solvent, have been added to the coating or appropriate adjustments shall be made to account for any ingredients added after the amount of coating has been determined: NR 440.74(4)(a)3.b.b. Determine the VOC content of all coatings applied using the test method specified in sub. (6) (a). This value shall be determined at a time and location in the process after all ingredients, including any dilution solvent, have been added to the coating or appropriate adjustments shall be made to account for any ingredients added after the VOC content in the coating has been determined; NR 440.74(4)(a)3.c.c. Install, calibrate, maintain and operate, according to the manufacturer’s specifications, a device that indicates the cumulative amount of VOC recovered by the control device over each nominal 1-month period. The device shall be certified by the manufacturer to be accurate to within ±2.0%; NR 440.74(4)(a)3.e.e. Calculate the overall VOC emission reduction (R) for each and every nominal 1-month period using Equation 5. Emissions during startups and shutdowns are to be included when determining R because startups and shutdowns are part of normal operation for this source category. If the value of Ri is equal to or greater than 0.90, compliance with sub. (3) (b) 1. is demonstrated.
1) The value of RSi is zero unless the owner or operator submits the following information to the administrator for approval of a measured value of RSi, that is greater than zero but less than or equal to 6% by weight of the liquid VOC applied:
a) Measurement techniques; and
b) Documentation that the measured value of RSi, exceeds zero but is less than or equal to 6% by weight of the liquid VOC applied.
2) For those facilities not subject to subd. 3. e. 1), the value of RSi is zero unless the owner or operator submits the following information to the administrator for approval of a measured value of RSi that is greater than 6% by weight of the liquid VOC applied:
a) Measurement techniques;
b) Documentation that the measured value of RSi exceeds 6% by weight of the liquid VOC applied; and
c) Either documentation of customer specifications requiring higher values or documentation that the desired properties of the product make necessary for RSi to exceed 6% by weight of the liquid VOC applied and that such properties cannot be achieved by other means.
3) The measurement techniques of subd. 3. e. 1) a) and 2) a) shall be submitted to the department for approval.
NR 440.74(4)(a)3.f.f. The point at which Mr is to be measured shall be established when the compliance procedures are approved. The presumptive point of measurement shall be prior to separation/purification; a point after separation/purification may be adopted for enhanced convenience or accuracy. NR 440.74(4)(a)4.4. Short-term liquid material balance. This method may be used as an alternative to the monthly liquid material balance described in subd. 3. The owner or operator using this method shall comply with the following procedures to determine VOC emission reduction for a 3 to 7 day period and shall continuously monitor VOC emissions as specified in sub. (5). NR 440.74(4)(a)4.a.a. Use the procedures described in subd. 3. a. through f. to determine the overall emission reduction, R. Compliance is demonstrated if the value of R is equal to or greater than 0.90. NR 440.74(4)(a)4.b.b. The number of days for the performance test is to be based on the affected facility’s representative performance consistent with the requirements of s. NR 440.08 (3). Data demonstrating that the chosen test period is representative shall be submitted to the department for approval. NR 440.74(4)(b)(b) Each owner or operator of an affected coating operation subject to the standard specified in sub. (3) (b) 2. shall: NR 440.74(4)(b)1.1. Demonstrate that a total enclosure is installed. The total enclosure shall either be approved by the department in accordance with the provisions of 40 CFR 60.746 or meet the requirements in subd. 1. a. to f. as follows: NR 440.74(4)(b)1.a.a. The only openings in the enclosure are forced makeup air and exhaust ducts and natural draft openings such as those through which raw materials enter and exit the coating operation; NR 440.74(4)(b)1.b.b. Total area of all natural draft openings does not exceed 5% of the total surface are of the total enclosure’s walls, floor and ceiling; NR 440.74(4)(b)1.c.c. All access doors and windows are closed during normal operation of the enclosed coating operation, except for brief, occasional openings to accommodate process equipment adjustments. If openings are frequent or if the access door or window remains open for a significant amount of time during the process operation, it shall be considered a natural draft opening. Access doors used routinely by workers to enter and exit the enclosed area shall be equipped with automatic closure devices; NR 440.74(4)(b)1.d.d. Average inward face velocity (FV) across all natural draft openings is a minimum of 3,600 meters per hour as determined by the following procedures: 1) Construct all forced makeup air ducts and all exhaust ducts so that the volumetric flow rate in each can be accurately determined by the test methods and procedures specified in sub. (6) (c) and (d). Volumetric flow rates shall be calculated without the adjustment normally made for moisture content; and
2) Determine FV by Equation 6: