NR 440.70(11)(a)3.
3. A liquid-mounted seal means a foam or liquid-filled seal mounted in contact with the liquid between the wall of the separator and the floating roof. A mechanical shoe seal means a metal sheet held vertically against the wall of the separator by springs or weighted levers and connected by braces to the floating roof. A flexible coated fabric or envelope spans the annular space between the metal sheet and the floating roof.
NR 440.70(11)(a)4.
4. The gap width between the primary seal and the separator wall may not exceed 3.8 cm (1.5 in.) at any point.
NR 440.70(11)(a)5.
5. The total gap area between the primary seal and the separator wall may not exceed 67 cm
2/m (3.2 in
2/ft) of separator wall perimeter.
NR 440.70(11)(a)6.
6. The secondary seal shall be above the primarily seal and cover the annular space between the floating roof and the wall of the separator.
NR 440.70(11)(a)7.
7. The gap width between the secondary seal and the separator wall may not exceed 1.3 cm (0.5 in.) at any point.
NR 440.70(11)(a)8.
8. The total gap area between the secondary seal and the separator wall may not exceed 6.7 cm
2/m (0.32 in
2/ft) of separator wall perimeter.
NR 440.70(11)(b)
(b) The maximum gap width and total gap area shall be determined by the methods and procedures specified in
sub. (14) (d).
NR 440.70(11)(b)1.
1. Measurement of primary seal gaps shall be performed within 60 calendar days after initial installation of the floating roof and introduction of refinery wastewater and once every 5 years thereafter.
NR 440.70(11)(b)2.
2. Measurement of secondary seal gaps shall be performed within 60 calendar days of initial introduction of refinery wastewater and once every year thereafter.
NR 440.70(11)(c)
(c) The owner or operator shall make necessary repairs within 30 calendar days of identification of seals not meeting the requirements listed in
par. (a) 2. and
6.
NR 440.70(11)(d)
(d) Except as provided in
par. (f), each opening in the roof shall be equipped with a gasketed cover, seal or lid, which shall be maintained in a closed position at all times, except during inspection and maintenance.
NR 440.70(11)(e)
(e) The roof shall be floating on the liquid, that is, off the roof supports, at all times except during abnormal conditions, that is, low flow rate.
NR 440.70(11)(f)
(f) The floating roof may be equipped with one or more emergency roof drains for removal of stormwater. Each emergency roof drain shall be fitted with a slotted membrane fabric cover that covers at least 90% of the drain opening area or a flexible fabric sleeve seal.
NR 440.70(11)(g)
(g) Access doors and other openings shall be visually inspected initially and semiannually thereafter to ensure that there is a tight fit around the edges and to identify other problems that could result in VOC emissions.
NR 440.70(11)(g)1.
1. When a broken seal or gasket on an access door or other opening is identified, it shall be repaired as soon as practicable, but not later than 30 calendar days after it is identified, except as provided in
sub. (8).
NR 440.70(11)(h)
(h) An owner or operator shall notify the department in the report required by
s. NR 440.07 that the owner or operator has elected to construct and operate a floating roof under
pars. (a) to
(g).
NR 440.70(11)(i)
(i) For portions of the oil-water separator tank where it is infeasible to construct and operate a floating roof, such as the skimmer mechanism and weirs, a fixed roof meeting the requirements of
sub. (5) (a) shall be installed.
NR 440.70(11)(j)
(j) Except as provided in
par. (i), if an owner or operator elects to comply with the provisions of this subsection, then the owner or operator does not need to comply with the provisions of
sub. (5) or
40 CFR 60.694 applicable to the same facilities.
NR 440.70 Note
Note:
Under
40 CFR 60.694, if, in the administrator's judgment, an alternative means of emission limitation will achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved by the applicable requirement in subs. (3) to (9), the administrator will publish in the Federal Register a notice permitting the use of the alterative means for purposes of compliance with that requirement. The notice may condition the permission on requirements related to the operation and maintenance of the alternative means. Any such notice shall be published only after notice and an opportunity for a hearing. Any person seeking permission under
40 CFR 60.694 shall collect, verify and submit to the administrator information showing that the alterative means achieves equivalent emission reductions.
NR 440.70(13)(a)(a) Each owner or operator subject to the provisions of this section shall install, calibrate, maintain and operate according to manufacturer's specifications the following equipment, unless alternative monitoring procedures or requirements are approved for that facility by the department.
NR 440.70(13)(a)1.
1. Where a thermal incinerator is used for VOC emission reduction, a temperature monitoring device equipped with a continuous recorder shall be used to measure the temperature of the gas stream in the combustion zone of the incinerator. The temperature monitoring device shall have an accuracy of
±1% of the temperature being measured, expressed in
°C, or
± 0.5
°C (0.9
°F), whichever is greater.
NR 440.70(13)(a)2.
2. Where a catalytic incinerator is used for VOC emission reduction, temperature monitoring devices, each equipped with a continuous recorder, shall be used to measure the temperature in the gas stream immediately before and after the catalyst bed of the incinerator. The temperature monitoring devices shall have an accuracy of
±1% of the temperature being measured, expressed in
°C, or
± 0.5
°C (0.9
°F), whichever is greater.
NR 440.70(13)(a)3.
3. Where a carbon absorber is used for VOC emissions reduction, monitoring is required as follows:
NR 440.70(13)(a)3.a.
a. For a carbon adsorption system that regenerates the carbon bed directly onsite, a monitoring device that continuously indicates and records the VOC concentration level or reading of organics in the exhaust gases of the control device outlet gas stream or inlet and outlet gas stream shall be used.
NR 440.70(13)(a)3.b.
b. For a carbon adsorption system that does not regenerate the carbon bed directly onsite in the control device, e.g., a carbon canister, the concentration level of the organic compounds in the exhaust vent stream from the carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be replaced with fresh carbon immediately when carbon breakthrough is indicated. The device shall be monitored on a daily basis or at intervals no greater than 20% of the design carbon replacement interval, whichever is greater. As an alternative to conducting this monitoring, an owner or operator may replace the carbon in the carbon adsorption system with fresh carbon at a regular predetermined time interval that is less than the carbon replacement interval that is determined by the maximum design flow rate and organic concentration in the gas stream vented to the carbon adsorption system.
NR 440.70(13)(b)
(b) Where a VOC recovery device other than a carbon absorber is used to meet the requirements specified in
sub. (7) (a), the owner or operator shall provide to the department information describing the operation of the control device and the process parameters that would indicate proper operation and maintenance of the device. The department may request further information and will specify appropriate monitoring procedures or requirements.
NR 440.70(13)(c)
(c) An alternative operational or process parameter may be monitored if it can be demonstrated that another parameter will ensure that the control device is operated in conformance with these standards and the control device's design specifications.
NR 440.70(14)
(14) Performance test methods and procedures and compliance provisions. NR 440.70(14)(a)(a) Before using any equipment installed in compliance with the requirements of
sub. (4),
(5),
(6),
(7),
(10) or
(11), the owner or operator shall inspect the equipment for indications of potential emissions, defects or other problems that may cause the requirements of this section not to be met. Points of inspection shall include, but are not limited to, seals, flanges, joints, gaskets, hatches, caps and plugs.
NR 440.70(14)(b)
(b) The owner or operator of each source that is equipped with a closed vent system and control device as required in
sub. (7), other than a flare, is exempt from
s. NR 440.08 and shall use Method 21 of
40 CFR part 60 Appendix A, incorporated by reference in
s. NR 440.17, to measure the emission concentrations, using 500 ppm as the no detectable emission limit. The instrument shall be calibrated each day before using. The calibration gases shall be:
NR 440.70(14)(b)2.
2. A mixture of either methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane.
NR 440.70(14)(c)
(c) The owner or operator shall conduct a performance test initially and at other times as requested by the department, using the test methods and procedures in
s. NR 440.18 (6) to determine compliance of flares.
NR 440.70(14)(d)
(d) After installing the control equipment required to meet
sub. (11) (a) to
(g) or whenever sources that have ceased to treat refinery wastewater for a period of 1 year or more are placed back into service, the owner or operator shall determine compliance with the standards in
sub. (11) (a) to
(g) as follows:
NR 440.70(14)(d)1.
1. The maximum gap widths and maximum gap areas between the primary seal and the separator wall and between the secondary seal and the separator wall shall be determined individually within 60 calendar days of the initial installation of the floating roof and introduction of refinery wastewater or 60 calendar days after the equipment is placed back into service using the following procedure when the separator is filled to the design operating level and when the roof is floating off the roof supports.
NR 440.70(14)(d)1.a.
a. Measure seal gaps around the entire perimeter of the separator in each place where a 0.32 cm (0.125 in) diameter uniform probe passes freely, without forcing or binding against seal, between the seal and the wall of the separator and measure the gap width and perimetrical distance of each such location.
NR 440.70(14)(d)1.b.
b. That total surface area of each gap described in
subd. 1. a. shall be determined by using probes of various widths to measure accurately the actual distance from the wall to the seal and multiplying each such width by its respective perimetrical distance.
NR 440.70(14)(d)1.c.
c. Add the gap surface area of each gap location for the primary seal and the secondary seal individually, divide the sum for each seal by the nominal perimeter of the separator basin and compare each to the maximum gap area as specified in
sub. (11).
NR 440.70(14)(d)2.
2. The gap widths and total gap area shall be determined using the procedure in
subd. 1. according to the following frequency:
NR 440.70(15)(a)(a) Each owner or operator of a facility subject to the provisions of this section shall comply with the recordkeeping requirements of this subsection. All records shall be retained for a period of 2 years after being recorded unless otherwise noted.
NR 440.70(15)(b)
(b) For individual drain systems subject to
sub. (4), the location, date and corrective action shall be recorded for each drain when the water seal is dry or otherwise breached, when a drain cap or plug is missing or improperly installed or other problem is identified that could result in VOC emissions, as determined during the initial and periodic visual or physical inspection.
NR 440.70(15)(c)
(c) For junction boxes subject to
sub. (4), the location, date and corrective action shall be recorded for inspections required by
sub. (4) (f) to
(i) when a broken seal, gap or other problem is identified that could result in VOC emissions.
NR 440.70(15)(d)
(d) For sewer lines subject to
subs. (4) and
(5) (e), the location, date and corrective action shall be recorded for inspections required by
sub. (4) (j) to
(n) and
(10) (e) to
(g) when a problem is identified that could result in VOC emissions.
NR 440.70(15)(e)
(e) For oil-water separators subject to
sub. (5), the location, date and corrective action shall be recorded for inspections required by
sub. (5) (a) when a problem is identified that could result in VOC emissions.
NR 440.70(15)(f)
(f) For closed vent systems subject to
sub. (7) and completely closed drain systems subject to
sub. (10), the location, date and corrective action shall be recorded for inspections required by
sub. (7) (e) to
(i) during which detectable emissions are measured or a problem is identified that could result in VOC emissions.
NR 440.70(15)(g)
(g) If an emission point cannot be repaired or corrected without a process unit shutdown, the expected date of a successful repair shall be recorded.
NR 440.70(15)(g)1.
1. The reason for the delay as specified in
sub. (8) shall be recorded if an emission point or equipment problem is not repaired or corrected in the specified amount of time.
NR 440.70(15)(g)2.
2. The signature of the owner or operator, or designee, whose decision it was that repair could not be effected without refinery or process shutdown shall be recorded.
NR 440.70(15)(g)3.
3. The date of successful repair or corrective action shall be recorded.
NR 440.70(15)(h)
(h) A copy of the design specifications for all equipment used to comply with the provisions of this section shall be kept for the life of the source in a readily accessible location.
NR 440.70(15)(i)
(i) The following information pertaining to the design specifications shall be kept:
NR 440.70(15)(i)2.
2. The dates and descriptions of any changes in the design specifications.
NR 440.70(15)(j)
(j) The following information pertaining to the operation and maintenance of closed drain systems and closed vent systems shall be kept in a readily accessible location:
NR 440.70(15)(j)1.
1. Documentation demonstrating that the control device will achieve the required control efficiency during maximum loading conditions shall be kept for the life of the facility. This documentation is to include a general description of the gas streams that enter the control device, including flow and VOC content under varying liquid level conditions, dynamic and static, and manufacturer's design specifications for the control device. If an enclosed combustion device with a minimum residence time of 0.75 seconds and a minimum temperature of 816
°C (1,500
°F) is used to meet the 95% requirement, documentation that those conditions exist is sufficient to meet the requirements of this paragraph.
NR 440.70(15)(j)2.
2. For a carbon adsorption system that does not regenerate the carbon bed directly onsite in the control device such as a carbon canister, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity and temperature. The design analysis shall also establish the design exhaust vent stream organic compound concentration level, capacity of carbon bed, type and working capacity of activated carbon used for carbon bed, and design carbon replacement interval based on the total carbon working capacity of the control device and source operating schedule.
NR 440.70(15)(j)3.
3. Periods when the closed vent systems and control devices required in
subs. (3) to
(9) are not operated as designed, including periods when a flare pilot does not have a flame shall be recorded and kept for 2 years after the information is recorded.
NR 440.70(15)(j)4.
4. Dates of startup and shutdown of the closed vent system and control devices required in
subs. (3) to
(9) shall be recorded and kept for 2 years after the information is recorded.
NR 440.70(15)(j)5.
5. The dates of each measurement of detectable emissions required in
subs. (3) to
(11), shall be recorded and kept for 2 years after the information is recorded.
NR 440.70(15)(j)6.
6. The background level measured during each detectable emissions measurements shall be recorded and kept for 2 years after the information is recorded.
NR 440.70(15)(j)7.
7. The maximum instrument reading measured during each detectable emission measurement shall be recorded and kept for 2 years after the information is recorded.
NR 440.70(15)(j)8.
8. Each owner or operator of an affected facility that uses a thermal incinerator shall maintain continuous records of the temperature of the gas stream in the combustion zone of the incinerator and records of all 3-hour periods of operation during which the average temperature of the gas stream in the combustion zone is more than 28
°C (50
°F) below the design combustion zone temperature and shall keep such records for 2 years after the information is recorded.
NR 440.70(15)(j)9.
9. Each owner or operator of an affected facility that uses a catalytic incinerator shall maintain continuous records of the temperature of the gas stream both upstream and downstream of the catalyst bed of the incinerator, records of all 3-hour periods of operation during which the average temperature measured before the catalyst bed is more than 28
°C (50
°F) below the design gas stream temperature and records of all 3-hour periods during which the average temperature difference across the catalyst bed is less than 80% of the design temperature difference and shall keep such records for 2 years after the information is recorded.
NR 440.70(15)(j)10.
10. Each owner or operator of an affected facility that uses a carbon absorber shall maintain continuous records of the VOC concentration level or reading of organics of the control device outlet gas stream or inlet and outlet gas stream and records of all 3-hour periods of operation during which the average VOC concentration level or reading of organics in the exhaust gases or inlet and outlet gas stream, is more than 20% greater than the design exhaust gas concentration level and shall keep such records for 2 years after the information is recorded.
NR 440.70(15)(j)11.
11. Each owner or operator that uses a carbon adsorber which is regenerated directly onsite shall maintain continuous records of the VOC concentration level or reading of organics of the control device outlet gas stream or inlet and outlet gas stream and records of all 3-hour periods of operation during which the average VOC concentration level or reading of organics in the exhaust gases or inlet and outlet gas stream, is more than 20% greater than the design exhaust gas concentration level and shall keep such records for 2 years after the information is recorded.
NR 440.70(15)(j)12.
12. Each owner or operator that uses a carbon adsorber that is not regenerated directly onsite in the control device shall maintain records of dates and times when the control device is monitored, when breakthrough is measured, and shall record the date and time that the existing carbon in the control device is replaced with fresh carbon.
NR 440.70(15)(k)
(k) If an owner or operator elects to install a tightly sealed cap or plug over a drain that is out of active service, the owner or operator shall keep for the life of a facility in a readily accessible location, plans or specifications which indicate the location of such drains.
NR 440.70(15)(L)
(L) For stormwater sewer systems subject to the exclusion in
sub. (3) (d), an owner or operator shall keep for the life of the facility in a readily accessible location, plans or specifications which demonstrate that no wastewater from any process units or equipment is directly discharged to the stormwater sewer system.
NR 440.70(15)(m)
(m) For ancillary equipment subject to the exclusion in
sub. (3) (e), an owner or operator shall keep for the life of a facility in a readily accessible location, plans or specifications which demonstrate that the ancillary equipment does not come in contact with or store oily wastewater.
NR 440.70(15)(n)
(n) For non-contact cooling water system subject to the exclusion in
sub. (3) (f) an owner or operator shall keep for the life of the facility in a readily accessible location, plans or specifications which demonstrate that the cooling water does not contact hydrocarbons or oily wastewater and is not recirculated through a cooling tower.
NR 440.70(15)(o)
(o) For oil-water separators subject to
sub. (11), the location, date and corrective action shall be recorded for inspections required by
sub. (11) (b) 1. and
2., and shall be maintained for the following time period as applicable:
NR 440.70(16)(a)(a) An owner or operator electing to comply with the provisions of
subs. (10) and
(11) shall notify the department of the alternative standard selected in the report required in
s. NR 440.07.
NR 440.70(16)(b)
(b) Each owner or operator of a facility subject to this section shall submit to the department within 60 days after initial startup a certification that the equipment necessary to comply with these standards has been installed and that the required initial inspections or tests of process drains, sewer lines, junction boxes, oil-water separators and closed vent systems and control devices have been carried out in accordance with these standards. Thereafter, the owner or operator shall submit to the department semiannually a certification that all of the required inspections have been carried out in accordance with these standards.
NR 440.70(16)(c)
(c) Each owner or operator of an affected facility that uses a flare shall submit to the department within 60 days after initial startup, as required under
s. NR 440.08 (1), a report of the results of the performance test required in
sub. (14) (c).
NR 440.70(16)(d)
(d) A report that summarizes all inspections when a water seal was dry or otherwise breached, when a drain cap or plug was missing or improperly installed or when cracks, gaps or other problems were identified that could result in VOC emissions, including information about the repairs or corrective action taken, shall be submitted initially and semiannually thereafter to the department.
NR 440.70(16)(e)
(e) As applicable, a report shall be submitted semiannually to the department that indicates:
NR 440.70(16)(e)1.
1. Each 3-hour period of operation during which the average temperature of the gas stream in the combustion zone of a thermal incinerator, as measured by the temperature monitoring device, is more than 28
°C (50
°F) below the design combustion zone temperatures.
NR 440.70(16)(e)2.
2. Each 3-hour period of operation during which the average temperature of the gas stream immediately before the catalyst bed of a catalytic incinerator, as measured by the temperature monitoring device, is more than 28
°C (50
°F) below the design gas stream temperature and any 3-hour period during which the average temperature difference across the catalyst bed (that is, the difference between the temperatures of the gas stream immediately before and after the catalyst bed), as measured by the temperature monitoring device, is less than 80% of the design temperature difference; or
NR 440.70(16)(e)3.
3. Each 3-hour period of operation during which the average VOC concentration level or reading of organics in the exhaust gases from a carbon absorber is more than 20% greater than the design exhaust gas concentration level or reading.
NR 440.70(16)(e)4.
4. Each occurrence when the carbon in a carbon adsorber system that is not regenerated directly onsite in the control device is not replaced at the pre-determined interval specified in
sub. (13) (a) 3. b.
NR 440.70(16)(f)
(f) If compliance with the provisions of this section is delayed pursuant to
sub. (9), the notification required under
s. NR 440.07 (1) (d) shall include the estimated date of the next scheduled refinery or process unit shutdown after the date of notification and the reason why compliance with the standards is technically impossible without a refinery or process unit shutdown.