%O2d is the concentration of O2, dry basis, percent by volume
NR 440.647(6)(b)2.a.
a. The emission rate correction factor, integrated sampling and analysis procedure of Method 3 of
40 CFR part 60, Appendix A, incorporated by reference in
s. NR 440.17 shall be used to determine the oxygen concentration (%O
2d ). The sampling site shall be the same as that of the TOC sample and the samples shall be taken during the same time that the TOC samples are taken.
NR 440.647(6)(c)
(c) If
par. (b) is not applicable, then the owner or operator shall determine compliance with the percent emission reduction standard in
sub. (3) (a) 1. a. 1) or (b) 1. c. as follows:
where:
P is the percent emission reduction, by weight
Einlet is the mass rate of TOC entering the control device, kg TOC/hr (lb TOC/hr)
Eoutlet is the mass rate of TOC, discharged to the atmosphere, kg TOC/hr (lb TOC/hr)
where:
Cij and Coj are the concentration of sample component “j" of the gas stream at the inlet and outlet of the control device, respectively, dry basis, ppmv
Mij and Moj are the molecular weight of sample component“j" of the gas stream at the inlet and outlet of the control device respectively, g/g-mole (lb/lb-mole)
Qi and Qo are the flow rate of the gas stream at the inlet and outlet of the control device, respectively, dscm/hr (dscf/hr)
Kl = 4.157 10-8 [(kg) / (g-mole)]/[(g) (ppm) (dscm)] {5.711 10-15 [(lb)/(lb-mole)] / [(lb) (ppm) (dscf)]}
NR 440.647(6)(c)2.a.
a. Method 18 shall be used to determine the concentration of each individual organic component (C
ij,, C
oj) in the gas stream. Method 1 or 1A, as appropriate, shall be used to determine the inlet and outlet sampling sites. The inlet site shall be before the inlet of the control device and after all product recovery units.
NR 440.647(6)(c)2.b.
b. Method 2, 2A, 2C or 2D of
40 CFR part 60, Appendix A, incorporated by reference in
s. NR 440.17, as appropriate, shall be used to determine the volumetric flow rates (Q
i,, Q
o). If necessary, Method 4 shall be used to determine the moisture content. Both determinations shall be compatible with the Method 18 determinations.
NR 440.647(6)(c)2.c.
c. Inlet and outlet samples shall be taken simultaneously. The sampling time for each run shall be 1 hour in which either an integrated sample or 4 grab samples shall be taken. If grab sampling is used, then the samples shall be taken at 15 minute intervals.
NR 440.647(6)(d)
(d) An owner or operator shall determine compliance with the individual stream exemptions in
sub. (1) (g) and the procedures specified in Table 3 for compliance with
sub. (3) (a) 1. as identified in
subd. 1. and
2. An owner or operator using the procedures specified in
sub. (3) (a) 1. for determining which continuous process emissions are to be controlled may use calculations demonstrated to be sufficiently accurate as to preclude the necessity of actual testing for purposes of calculating the uncontrolled annual emissions and weight percent of TOC. Owners or operators seeking to exempt streams under
sub. (1) (g) shall use the appropriate test procedures specified in this subsection.
NR 440.647(6)(d)1.
1. The uncontrolled annual emissions of the individual vent stream shall be determined using the following equation:
where:
Eunc is the uncontrolled annual emissions, Mg/yr (ton/yr)
Cj is the concentration of sample component j of the gas stream, dry basis, ppmv
Mj is the molecular weight of sample component j of the gas stream, g/g-mole (lb/lb-mole)
Q is the flow rate of the gas stream, dscm/hr (dscf/hr)
K2 is 4.157 x 10-11 [(Mg) (g-mole)]/[(g) (ppm) (dscm)] for metric units and 1.298 x 10-12 [(ton) (lb-mole)]/[(lb) (ppm) (dscf)] for English units
8,600 is the operating hours per year
NR 440.647(6)(d)1.a.
a. Method 18 shall be used to determine the concentration of each individual organic component (C
j) in the gas stream. Method 1 or 1A, as appropriate, shall be used to determine the sampling site. If the gas stream is controlled in an existing control device, the sampling site shall be before the inlet of the control device and after all product recovery units.
NR 440.647(6)(d)1.b.
b. Method 2, 2A, 2C or 2D, as appropriate, shall be used to determine the volumetric flow rate (Q). If necessary, Method 4 shall be used to determine the moisture content. Both determinations shall be compatible with the Method 18 determinations.
NR 440.647(6)(d)1.c.
c. The sampling time for each run shall be 1 hour in which either an integrated sample or 4 grab samples shall be taken. If grab sampling is used, then the samples shall be taken at 15 minute intervals.
where:
Cj is the concentration of sample TOC component “j" of the gas stream, dry basis, ppmv
Mj is the molecular weight of sample TOC component “j" of the gas stream, g/g-mole (lb/lb-mole)
MWgas is the average molecular weight of the entire gas stream, g/g-mole (lb/lb-mole)
NR 440.647(6)(d)2.a.
a. Method 18 shall be used to determine the concentration of each individual organic component (C
j) in the gas stream. Method 1 or 1A, as appropriate, shall be used to determine the sampling site. If the gas stream is controlled in an existing control device, the sampling site shall be before the inlet of the control device and after all product recovery units. If necessary, Method 4 shall be used to determine the moisture content. This determination shall be compatible with the Method 18 determinations.
NR 440.647(6)(d)2.b.
b. The average molecular weight of the gas stream shall be determined using methods approved by the department. If the carrier component of the gas stream is nitrogen, then an average molecular weight of 28 g/g-mole (lb/lb- mole) may be used in lieu of testing. If the carrier component of the gas stream is air, then an average molecular weight of 29 g/g-mole (lb/lb-mole) may be used in lieu of testing.
NR 440.647(6)(d)2.c.
c. The sampling time for each run shall be 1 hour in which either an integrated sample or 4 grab samples shall be taken. If grab sampling is used, then the samples shall be taken at 15 minute intervals.
NR 440.647(6)(e)
(e) The owner or operator shall determine compliance of flares with the visible emission and flare provisions in
sub. (3) as follows:
NR 440.647(6)(f)
(f) The owner or operator shall determine compliance with the net heating value provisions in
s. NR 440.18 as referenced by
sub. (3) (a) 1. a. 3). The net heating value of the process vent stream being combusted in a flare shall be computed as follows:
where:
HT is the vent stream net heating value, MJ/scm (Btu/scf), where the net enthalpy per mole of offgas is based on combustion at 25°C and 760 mm Hg (77°F and 30 in Hg), but the standard temperature for determining the volume corresponding to one mole is 20°C (68°F)
K3 is 1.74 x 10-7 (l/ppm)(g-mole/scm)(MJ/kcal) for metric units where standard temperature for (g-mole/scm) is 20°C and 4.67 x 10-6 (1/ppm)(lb-mole/scf)(Btu/kcal) for English units where standard temperature for (lb-mole/scf) is 68°F
Cj is the concentration on a wet basis of compound j in ppm
Hj is the net heat of combustion of compound j, kcal/g-mole (kcal/lb-mole), based on combustion at 25°C and 760 mm Hg (77°F and 30 in Hg)
NR 440.647(6)(f)1.
1. Method 18 shall be used to determine the concentration of each individual organic component (C
j) in the gas stream. Method 1 or 1A, as appropriate, shall be used to determine the sampling site to the inlet of the flare. Using this same sample, ASTM D1946-90 (reapproved 1994), incorporated by reference in
s. NR 440.17 (2) (a) 24., shall be used to determine the hydrogen and carbon monoxide content.
NR 440.647(6)(f)2.
2. The sampling time for each run shall be 1 hour in which either an integrated sample or 4 grab samples shall be taken. If grab sampling is used, then the samples shall be taken at 15 minute intervals.
NR 440.647(6)(f)3.
3. Published or calculated values shall be used for the net heats of combustion of the sample components. If values are not published or cannot be calculated, ASTM D2382-88 or D4809-95, incorporated by reference in
s. NR 440.17 (2) (a) 30. and
61., may be used to determine the net heat of combustion of component “j".
NR 440.647(6)(g)1.
1. If applicable, the net heating value (H
T) of the process vent shall be determined according to the procedures in
par. (f) to determine the applicable velocity requirements.
NR 440.647(6)(g)2.
2. If applicable, the maximum permitted velocity (V
max) for steam-assisted and nonassisted flares shall be computed using the following equation:
where:
Vmax is the maximum permitted velocity, m/sec (ft/sec)
K4 is 28.8 for metric units and 1212 for English units
K5 is 31.7 for metric units and 850.8 for English units
HT is the net heating value as determined in par. (f), MJ/scm (Btu/scf)
NR 440.647(6)(g)3.
3. The maximum permitted velocity, V
max, for air-assisted flares shall be determined by the following equation:
where:
Vmax is the maximum permitted velocity, m/sec (ft/sec)
K6 is 8.706 m/sec for metric units and 28.56 ft/sec for English units
K7 is 0.7084 [(m/sec)/(MJ/scm)] for metric units and 0.00245 [(ft/sec)/(Btu/scf)] for English units
HT is the net heating value as determined in par. (f), MJ/scm (Btu/scf)
NR 440.647(6)(g)4.
4. The actual exit velocity of a flare shall be determined by dividing the volumetric flow rate (in units of standard temperature and pressure), as determined by Method 2, 2A, 2C or 2D as appropriate, by the unobstructed (free) cross sectional area of the flare tip.
NR 440.647(6)(h)1.
1. The emission rate of TOC shall be computed using the following equation:
where:
ERTOC is the emission rate of total organic compounds, minus methane and ethane, kg TOC/Mg product (lb TOC/ton)
ETOC is the emission rate of total organic compounds, minus methane and ethane, in the sample, kg/hr (lb/hr)
Pp is the rate of polymer production, kg/hr (lb/hr)
K5 is 1,000 kg/Mg for metric units and 2,000 lb/ton for English units
NR 440.647(6)(h)2.
2. The mass rate of TOC, E
TOC, shall be determined according to the procedures, as appropriate, in
par. (c) 2. The sampling site for determining compliance with
sub. (1) (d) and
(e) shall be before any add-on control devices and after all product recovery devices. Otherwise, the sampling site shall be at the outlet of the control device.
NR 440.647(6)(h)3.
3. The rate of polymer production, P
p, shall be determined by dividing the weight of polymer pulled (in kg (lb)) from the process line during the performance test by the number of hours taken to perform the performance test. The weight of polymer pulled shall be determined by direct measurement or, subject to prior approval by the department, computed from materials balance by good engineering practice.
NR 440.647(6)(i)
(i) The owner or operator shall determine continuous compliance with the temperature requirements in
sub. (3) (b) 1. b. and
1. a. 2) by using the temperature monitoring equipment described in
sub. (5) (a) 1. An average temperature shall be determined from measurements taken at least every 15 minutes every 3 hours while the vent stream is normally routed and constituted. Each 3-hour period constitutes a performance test.
NR 440.647(6)(j)
(j) For purposes of determining compliance with
sub. (3) (c) 1. b. 2), 3), 2. b.
2) or 3), the ethylene glycol concentration in either the cooling tower or the liquid effluent from steam-jet ejectors used to produce a vacuum in the polymerization reactors, whichever is applicable, shall be determined:
NR 440.647(6)(j)1.
1. Using procedures that conform to the methods described in ASTM D2908-91, Standard Practice for Measuring Volatile Organic Matter in Water by Aqueous-Injection Gas Chromatography, incorporated by reference in
s. NR 440.17 (2) (a) 37., except as provided in
subd. 2.:
NR 440.647(6)(j)1.a.
a. At least one sample per operating day shall be collected using the grab sampling procedures of ASTM D3370-95a, Standard Practices for Sampling Water, incorporated by reference in
s. NR 440.17 (2) (a) 47. An average ethylene glycol concentration by weight shall be calculated on a daily basis over a rolling 14-day period of operating days, except as provided in
subd. 1. b. and
c. Each daily average ethylene glycol concentration so calculated constitutes a performance test. Exceedance of the standard during the reduced testing program specified in
subd. 1. b. and
c. is a violation of these standards.
NR 440.647(6)(j)1.b.
b. For those determining compliance with
sub. (3) (c) 1. b. 2) or 2. b. 2), the owner or operator may elect to reduce the sampling program to any 14 consecutive day period once every 2 calendar months, if at least 17 consecutive 14-day rolling average concentrations immediately preceding the reduced sampling program are each less than 0.10 weight percent ethylene glycol. If the average concentration obtained over the 14 day sampling during the reduced testing period exceeds the upper 95% confidence interval calculated from the most recent test results in which no one 14-day average exceeded 0.10 weight percent ethylene glycol, then the owner or operator shall reinstitute a daily sampling program. A reduced sampling program can be reinstituted if the requirements specified in this paragraph are met.
NR 440.647(6)(j)1.c.
c. For those determining compliance with
sub. (3) (c) 1. b. 3) or 2. b. 3) the owner or operator may elect to reduce the sampling program to any 14 consecutive day period once every 2 calendar months, if at least 17 consecutive 14-day rolling average concentrations immediately preceding the reduced sampling program are each less than 1.8 weight percent ethylene glycol. If the average concentration obtained over the 14 day sampling during the reduced test period exceeds the upper 95% confidence interval calculated from the most recent test results in which no one 14-day average exceeded 1.8 weight percent ethylene glycol, then the owner or operator shall reinstitute a daily sampling program. A reduced program can be reinstituted if the requirements specified in this paragraph are met.
NR 440.647(6)(j)1.d.
d. The upper 95% confidence interval shall be calculated using the following equation:
where:
Xi is the daily ethylene glycol concentration for each day used to calculate the 14-day rolling average used in test results to justify implementing the reduced testing program
n is the number of ethylene glycol concentrations