This is the preview version of the Wisconsin State Legislature site.
Please see http://docs.legis.wisconsin.gov for the production version.
NR 440.52(3) (3)Standards for lead.
NR 440.52(3)(a)(a) On and after the date on which the performance test required to be conducted by s. NR 440.08 is completed, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere:
NR 440.52(3)(a)1. 1. From any grid casting facility any gases that contain lead in excess of 0.40 milligram of lead per dry standard cubic meter of exhaust (0.000175 gr/dscf).
NR 440.52(3)(a)2. 2. From any paste mixing facility any gases that contain in excess of 1.00 milligram of lead per dry standard cubic meter of exhaust (0.000437 gr/dscf).
NR 440.52(3)(a)3. 3. From any 3-process operation facility any gases that contain in excess of 1.00 milligram of lead per dry standard cubic meter of exhaust (0.000437 gr/dscf).
NR 440.52(3)(a)4. 4. From any lead oxide manufacturing facility any gases that contain in excess of 5.0 milligrams of lead per kilogram of lead feed (0.010 lb/ton).
NR 440.52(3)(a)5. 5. From any lead reclamation facility any gases that contain in excess of 4.50 milligrams of lead per dry standard cubic meter of exhaust (0.00197 gr/dscf).
NR 440.52(3)(a)6. 6. From any other lead-emitting operation any gases that contain in excess of 1.00 milligram of lead per dry standard cubic meter of exhaust (0.000437 gr/dscf).
NR 440.52(3)(a)7. 7. From any affected facility other than a lead reclamation facility any gases with greater than zero percent opacity measured according to Method 9 of 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17, and rounded to the nearest whole percentage.
NR 440.52(3)(a)8. 8. From any lead reclamation facility any gases with greater than 5% opacity, measured according to Method 9 of 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17, and rounded to the nearest whole percentage.
NR 440.52(3)(b) (b) When 2 or more facilities at the same plant (except the lead oxide manufacturing facility) are ducted to a common control device, an equivalent standard for the total exhaust from the commonly controlled facilities shall be determined as follows: - See PDF for diagram PDF
where:
Se is the equivalent standard for the total exhaust stream
Sa is the actual standard for each exhaust stream ducted to the control device
N is the total number of exhaust streams ducted to the control device
- See PDF for diagram PDF is the dry standard volumetric flow rate of the effluent gas stream from each facility ducted to the control device
- See PDF for diagram PDF is the total dry standard volumetric flow rate of all effluent gas streams ducted to the control device
NR 440.52(4) (4)Monitoring of emissions and operations. The owner or operator of any lead-acid battery manufacturing facility subject to the provisions of this section and controlled by scrubbing systems shall install, calibrate, maintain and operate a monitoring device or devices that measure and record the pressure drop across the scrubbing systems at least once every 15 minutes. The monitoring device shall have an accuracy of " 5% over its operating range.
NR 440.52(5) (5)Test methods and procedures.
NR 440.52(5)(a)(a) In conducting the performance tests required in s. NR 440.08, the owner or operator shall use as reference methods and procedures the test methods in Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17, or other methods and procedures as specified in this subsection, except as provided in s. NR 440.08 (2).
NR 440.52(5)(b) (b) The owner or operator shall determine compliance with the lead standards in sub. (3), except sub. (3) (a) 4., as follows:
NR 440.52(5)(b)1. 1. Method 12 shall be used to determine the lead concentration and, if applicable, the volumetric flow rate (Qsda) of the effluent gas. The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf).
NR 440.52(5)(b)2. 2. When different operations in a 3-process operation facility are ducted to separate control devices, the lead emission concentration (C) from the facility shall be determined as follows: - See PDF for diagram PDF
where:
C is the concentration of lead emissions for the entire facility, mg/dscm (gr/dscf)
Ca is the concentration of lead emissions from facility “a", mg/dscm (gr/dscf)
Qsda is the volumetric flow rate of effluent gas from facility “a", dscm/hr (dscf/hr)
N is the total number of control devices to which separate operations in the facility are ducted
NR 440.52(5)(b)3. 3. Method 9 and the procedures in s. NR 440.11 shall be used to determine opacity. The opacity numbers shall be rounded off to the nearest whole percentage.
NR 440.52(5)(c) (c) The owner or operator shall determine compliance with the lead standard in sub. (3) (a) 4. as follows:
NR 440.52(5)(c)1. 1. The emission rate (E) from a lead oxide manufacturing facility shall be computed for each run using the following equation: - See PDF for diagram PDF
where:
E is the emission rate of lead, mg/kg (lb/ton) of lead charged
CPbi is the concentration of lead from emission point “i", mg/dscm (gr/dscf)
Qsdi is the volumetric flow rate of effluent gas from emission point “i", dscm/hr (dscf/hr)
M is the number of emission points in the affected facility
P is the lead feed rate to the facility, kg/hr (ton/hr)
K is the conversion factor, 1.0 mg/mg (7000 gr/lb)
NR 440.52(5)(c)2. 2. Method 12 shall be used to determine the lead concentration (CPb) and the volumetric flow rate - See PDF for diagram PDF of the effluent gas. The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf).
NR 440.52(5)(c)3. 3. The average lead feed rate (P) shall be determined for each run using the following equation: - See PDF for diagram PDF
where:
N is the number of lead pigs (ingots) charged
W is the average mass of a pig, kg (ton)
q is the duration of run, hr
NR 440.52 History History: Cr. Register, January, 1984, No. 337, eff. 2-1-84; am. (2) (intro.), Register, September, 1990, No. 417, eff. 10-1-90; r. and recr. (5), Register, July, 1993, No. 451, eff. 8-1-93; correction in (5) (b) 1. made under s. 13.93 (2m) (b) 7., Stats., Register, November, 1999, No. 527; CR 06-109: am. (3) (a) 1., 2., 3., 5. and 6. and (5) (c) 1. Register May 2008 No. 629, eff. 6-1-08.
NR 440.525 NR 440.525Metallic mineral processing plants.
NR 440.525(1)(1)Applicability and designation of affected facility.
NR 440.525(1)(a)(a) The provisions of this section are applicable to the following affected facilities in metallic mineral processing plants: each crusher and screen in open-pit mines; each crusher, screen, bucket elevator, conveyor belt transfer point, thermal dryer, product packaging station, storage bin, enclosed storage area, truck loading station, truck unloading station, railcar loading station and railcar unloading station at the mill or concentrator with the following exceptions. All facilities located in underground mines are exempted from the provisions of this section. At uranium ore processing plants all facilities subsequent to and including the beneficiation of uranium ore are exempted from the provisions of this section.
NR 440.525(1)(b) (b) An affected facility under par. (a) that commences construction or modification after August 24, 1982, is subject to the requirements of this section.
NR 440.525(2) (2)Definitions. As used in this section, terms not defined in this subsection have the meanings given in s. NR 440.02.
NR 440.525(2)(a) (a) “Bucket elevator" means a conveying device for metallic minerals consisting of a head and foot assembly that supports and drives an endless single or double strand chain or belt to which buckets are attached.
NR 440.525(2)(b) (b) “Capture system" means the equipment used to capture and transport particulate matter generated by one or more affected facilities to a control device.
NR 440.525(2)(c) (c) “Control device" means the air pollution control equipment used to reduce particulate matter emissions released to the atmosphere from one or more affected facilities at a metallic mineral processing plant.
NR 440.525(2)(d) (d) “Conveyor belt transfer point" means a point in the conveying operation where the metallic mineral or metallic mineral concentrate is transferred to or from a conveyor belt except where the metallic mineral is being transferred to a stockpile.
NR 440.525(2)(e) (e) “Crusher" means a machine used to crush any metallic mineral and includes feeders or conveyors located immediately below the crushing surfaces. Crushers include, but are not limited to, the following types: jaw, gyratory, cone and hammermill.
NR 440.525(2)(f) (f) “Enclosed storage area" means any area covered by a roof under which metallic minerals are stored prior to future processing or loading.
NR 440.525(2)(g) (g) “Metallic mineral concentrate" means a material containing metallic compounds in concentrations higher than naturally occurring in ore but requiring additional processing if pure metal is to be isolated. A metallic mineral concentrate contains at least one of the following metals in any of its oxidation states and at a concentration that contributes to the concentrate's commercial value: aluminum, copper, gold, iron, lead, molybdenum, silver, titanium, tungsten, uranium, zinc and zirconium. This definition may not be construed as requiring that material containing metallic compounds be refined to a pure metal in order for the material to be considered a metallic mineral concentrate to be covered by the standards.
NR 440.525(2)(h) (h) “Metallic mineral processing plant" means any combination of equipment that produces metallic mineral concentrates from ore. Metallic mineral processing commences with the mining of ore and includes all operations either up to and including the loading of wet or dry concentrates or solutions of metallic minerals for transfer to facilities at nonadjacent locations that will subsequently process metallic concentrates into purified metals (or other products) or up to and including all material transfer and storage operations that precede the operations that produce refined metals (or other products) from metallic mineral concentrates at facilities adjacent to the metallic mineral processing plant. This definition may not be construed as requiring that mining of ore be conducted in order for the combination of equipment to be considered a metallic mineral processing plant. (See also the definition of “metallic mineral concentrate." )
NR 440.525(2)(i) (i) “Process fugitive emissions" means particulate matter emissions from an affected facility that are not collected by a capture system.
NR 440.525(2)(j) (j) “Product packaging station" means the equipment used to fill containers with metallic compounds or metallic mineral concentrates.
NR 440.525(2)(k) (k) “Railroad loading station" means that portion of a metallic mineral processing plant where metallic minerals or metallic mineral concentrates are loaded by a conveying system into railcars.
NR 440.525(2)(L) (L) “Railcar unloading station" means that portion of a metallic mineral processing plant where metallic ore is unloaded from a railcar into a hopper, screen or crusher.
NR 440.525(2)(m) (m) “Screen" means a device for separating material according to size by passing undersize material through one or more mesh surfaces (screens) in series and retaining oversize material on the mesh surfaces (screens).
NR 440.525(2)(n) (n) “Stack emissions" means the particulate matter captured and released to the atmosphere through a stack, chimney or flue.
NR 440.525(2)(o) (o) “Storage bin" means a facility for storage (including surge bins and hoppers) of metallic minerals prior to further processing or loading.
NR 440.525(2)(p) (p) “Surface moisture" means water that is not chemically bound to a metallic mineral or metallic mineral concentrate.
NR 440.525(2)(q) (q) “Thermal dryer" means a unit in which the surface moisture content of a metallic mineral or a metallic mineral concentrate is reduced by direct or indirect contact with a heated gas system.
NR 440.525(2)(r) (r) “Truck loading station" means that portion of a metallic mineral processing plant where metallic minerals or metallic mineral concentrates are loaded by a conveying system into trucks.
NR 440.525(2)(s) (s) “Truck unloading station" means that portion of a metallic mineral processing plant where metallic ore is unloaded from a truck into a hopper, screen, or crusher.
NR 440.525(3) (3)Standard for particulate matter.
NR 440.525(3)(a)(a) On and after the date on which the performance test required to be conducted by s. NR 440.08 is completed no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from an affected facility any stack emissions that:
NR 440.525(3)(a)1. 1. Contain particulate matter in excess of 0.050 grams per dry standard cubic meter (0.022 gr/dscf).
NR 440.525(3)(a)2. 2. Exhibit greater than 7% opacity unless the stack emissions are discharged from an affected facility using a wet scrubbing emission control device.
NR 440.525(3)(b) (b) On and after the sixtieth day after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup, no owner or operator subject to the provisions of this section may cause to be discharged into the atmosphere from an affected facility any process fugitive emissions that exhibit greater than 10% opacity.
NR 440.525(4) (4)Reconstruction.
NR 440.525(4)(a)(a) The cost of replacement of ore-contact surfaces on processing equipment may not be considered in calculating either the “fixed capital cost of the new components" or the “fixed capital cost that would be required to construct a comparable new facility" under s. NR 440.15. Ore-contact surfaces are: crushing surfaces; screen meshes; bars, and plates; conveyor belts; elevator buckets; and pan feeders.
NR 440.525(4)(b) (b) Under s. NR 440.15 the “fixed capital cost of the new components" includes the fixed capital cost of all depreciable components (except components specified in par. (a) that are or will be replaced pursuant to all continuous programs of component replacement commenced within any 2-year period following August 24, 1982.
NR 440.525(5) (5)Monitoring of operations.
NR 440.525(5)(a)(a) The owner or operator subject to the provisions of this section shall install, calibrate, maintain and operate a monitoring device for the continuous measurement of the change in pressure of the gas stream through the scrubber for any affected facility using a wet scrubber emission control device. The monitoring device must be certified by the manufacturer to be accurate within "250 pascals ("1 inch water) gauge pressure and must be calibrated on an annual basis in accordance with manufacturer's instructions.
NR 440.525(5)(b) (b) The owner or operator subject to the provisions of this section shall install, calibrate, maintain and operate a monitoring device for the continuous measurement of the scrubbing liquid flow rate to a wet scrubber for any affected facility using any type of wet scrubbing emission control device. The monitoring device must be certified by the manufacturer to be accurate within " 5% of design scrubbing liquid flow rate and must be calibrated on at least an annual basis in accordance with manufacturer's instructions.
NR 440.525(6) (6)Recordkeeping and reporting requirements.
NR 440.525(6)(a)(a) The owner or operator subject to the provisions of this section shall conduct a performance test and submit to the department a written report of the results of the test as specified in s. NR 440.08 (1).
NR 440.525(6)(b) (b) During the initial performance test of a wet scrubber, and at least weekly thereafter, the owner or operator shall record the measurements of both the change in pressure of the gas stream across the scrubber and the scrubbing liquid flow rate.
NR 440.525(6)(c) (c) After the initial performance test of a wet scrubber, the owner or operator shall submit semiannual reports to the department of occurrences when the measurements of the scrubber pressure loss or gain or liquid flow rate differ by more than "30% from the average obtained during the most recent performance test.
NR 440.525(7) (7)Test methods and procedures.
NR 440.525(7)(a)(a) In conducting the performance tests required in s. NR 440.08, the owner or operator shall use as reference methods and procedures the test methods in Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17, or other methods and procedures as specified in this subsection, except as provided in s. NR 440.08 (2).
NR 440.525(7)(b) (b) The owner or operator shall determine compliance with the particulate matter standards sub. (3) as follows:
NR 440.525(7)(b)1. 1. Method 5 or 17 shall be used to determine the particulate matter concentration. The sample volume for each run shall be at least 1.70 dscm (60 dscf). The sampling probe and filter holder of Method 5 may be operated without heaters if the gas stream being sampled is at ambient temperature. For gas streams above ambient temperature, the Method 5 sampling train shall be operated with a probe and filter temperature slightly above the effluent temperature, up to a maximum filter temperature of 121°C (250°F), in order to prevent water condensation on the filter.
NR 440.525(7)(b)2. 2. Method 9 and the procedures in s. NR 440.11 shall be used to determine opacity from stack emissions and process fugitive emissions. The observer shall read opacity only when emissions are clearly identified as emanating solely from the affected facility being observed.
Loading...
Loading...
Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.