NR 440.26(6)(a)1.
1. For fluid catalytic cracking unit catalyst regenerators subject to
sub. (3) (a) 2., an instrument for continuously monitoring and recording the opacity of emission into the atmosphere. The instrument shall be spanned at 60, 70 or 80% opacity.
NR 440.26(6)(a)2.
2. For fluid catalytic cracking unit catalyst regenerators subject to
sub. (4) (a), an instrument for continuously monitoring and recording the concentration by volume (dry basis) of CO emission into the atmosphere, except as provided in
subd. 2. b.
NR 440.26(6)(a)2.b.
b. A CO continuous monitoring system need not be installed if the owner or operator demonstrates that the average CO emission are less than 50 ppm on a dry basis and also files a written request for exemption to the department and receives an exemption. The demonstration shall consist of continuously monitoring CO emissions for 30 days using an instrument that shall meet the requirements of Performance Specification 4 of Appendix B of
40 CFR part 60, incorporated by reference in
s. NR 440.17. The span value shall be 100 ppm CO instead of 1,000 ppm, and the relative accuracy limit shall be 10% of the average CO emission or 5 ppm CO, whichever is greater. For instruments that are identical to Method 10 of Appendix A of
40 CFR part 60, incorporated by reference in
s. NR 440.17, and employ the sample conditioning system of Method 10A of Appendix A, the alternative relative accuracy test procedure in
s. 10.1 of Performance Specification 2 of Appendix B may be used in place of the relative accuracy test.
NR 440.26(6)(a)3.
3. For fuel gas combustion devices subject to
sub. (5) (a) 1., an instrument for continuously monitoring and recording the concentration by volume (dry basis, zero percent excess air) of SO
2 emissions into the atmosphere, except where an H
2S monitor is installed under
par. (a) 4. The monitor shall include an oxygen monitor for correcting the data for excess air.
NR 440.26(6)(a)3.b.
b. The SO
2 monitoring level equivalent to the H
2S standard under
sub. (5) (a) 1. shall be 20 ppm (dry basis, zero percent excess air).
NR 440.26(6)(a)3.c.
c. The performance evaluations for this SO
2 monitor under
s. NR 440.13 (3) shall use Performance Specification 2 of
40 CFR part 60, Appendix B, incorporated by reference in
s. NR 440.17 (1). Methods 6 or 6C and 3 or 3A of
40 CFR part 60, Appendix A, incorporated by reference in
s. NR 440.17 (1), shall be used for conducting the relative accuracy evaluations. Method 6 samples shall be taken at a flow rate of approximately 2 liters/min for at least 30 minutes. The relative accuracy limit shall be 20% or 4 ppm, whichever is greater, and the calibration drift limit shall be 5% of the established span value.
NR 440.26(6)(a)3.d.
d. Fuel gas combustion devices having a common source of fuel gas may be monitored at only one location, that is, after one of the combustion devices, if monitoring at this location accurately represents the SO
2 emission into the atmosphere from each of the combustion devices.
NR 440.26(6)(a)4.
4. In place of the SO
2 monitor in
par. (a) 3., an instrument for continuously monitoring and recording the concentration (dry basis) of H
2S in fuel gases before being burned in any fuel gas combustion device.
NR 440.26(6)(a)4.b.
b. Fuel gas combustion devices having a common source of fuel gas may be monitored at only one location, if monitoring at this location accurately represents the concentration of H
2S in the fuel gas begin burned.
NR 440.26(6)(a)5.
5. For Claus sulfur recovery plants with oxidation control systems or reduction control systems followed by incineration subject to
sub. (5) (a) 2. a., an instrument for continuously monitoring and recording the concentration (dry basis, zero percent excess air) of SO
2 emissions into the atmosphere. The monitor shall include an oxygen monitor for correcting the data for excess air.
NR 440.26(6)(a)6.
6. For Claus sulfur recovery plants with reduction control systems not followed by incineration subject to
sub. (5) (a) 2. b., an instrument for continuously monitoring and recording the concentration of reduced sulfur and O
2 emissions into the atmosphere. The reduced sulfur emission shall be calculated as SO
2 (dry basis, zero percent excess air).
NR 440.26(6)(a)6.b.
b. The performance evaluations for this reduced sulfur (and O
2) monitor under
s. NR 440.13 (3) shall use Performance Specification 5 (and Performance Specification 3 for the O
2 analyzer) of
40 CFR part 60, Appendix B, incorporated by reference in
s. NR 440.17 (1). Methods 15 or 15A and Method 3 of
40 CFR part 60, Appendix A, incorporated by reference in
s. NR 440.17 (1), shall be used for conducting the relative accuracy evaluations. If Method 3 yields O
2 concentrations below 0.25% during the performance specification test, the O
2 concentration may be assumed to be zero and the reduced sulfur CEMS need not include an O
2 monitor.
NR 440.26(6)(a)7.
7. In place of the reduced sulfur monitor under
subd. 6., an instrument using an air or O
2 dilution and oxidation system to convert the reduced sulfur to SO
2 for continuously monitoring and recording the concentration (dry basis, zero percent excess air) of the resultant SO
2. The monitor shall include an oxygen monitor for correcting the data for excess oxygen.
NR 440.26(6)(a)7.b.
b. For reporting purposes, the SO
2 exceedance level for this monitor is 250 ppm (dry basis, zero percent excess air).
NR 440.26(6)(a)7.c.
c. The performance evaluations for the SO
2 (and O
2) monitor under
s. NR 440.13 (3) shall use Performance Specification 5. Methods 15 or 15A and Method 3 shall be used for conducting the relative accuracy evaluations.
NR 440.26(6)(a)8.
8. An instrument for continuously monitoring and recording concentrations of sulfur dioxide in the gases at both the inlet and outlet of the sulfur dioxide control device from any fluid catalytic cracking unit catalyst regenerator for which the owner or operator seeks to comply with
sub. (5) (b) 1.
NR 440.26(6)(a)8.a.
a. The span value of the inlet monitor shall be set at 125% of the maximum estimated hourly potential sulfur dioxide emission concentration entering the control device, and the span value of the outlet monitor shall be set at 50% of the maximum estimated hourly potential sulfur dioxide emission concentration entering the control device.
NR 440.26(6)(a)9.
9. An instrument for continuously monitoring and recording concentrations of sulfur dioxide in the gases discharged into the atmosphere from any fluid catalytic cracking unit catalyst regenerator for which the owner or operator seeks to comply specifically with the 50 ppmv emission limit under
sub. (5) (b) 1.
NR 440.26(6)(a)9.a.
a. The span value of the monitor shall be set at 50% of the maximum hourly potential sulfur dioxide emission concentration of the control device.
NR 440.26(6)(a)10.
10. An instrument for continuously monitoring and recording concentrations of oxygen (O
2) in the gases at both the inlet and outlet of the sulfur dioxide control device (or the outlet only if specifically complying with the 50 ppmv standard) from any fluid catalytic cracking unit catalyst regenerator for which the owner or operator has elected to comply with
sub. (5) (b) 1. The span of the continuous monitoring system shall be set at 10%.
NR 440.26(6)(a)11.
11. The continuous monitoring systems under
par. (a) 8.,
9. and
10. are operated and data recorded during all periods of operation of the affected facility including periods of startup, shutdown or malfunction, except for continuous monitoring system breakdowns, repairs, calibration checks, and zero and span adjustments.
NR 440.26(6)(a)12.
12. The owner or operator shall use the following procedures to evaluate the continuous monitoring systems under
subds. 8.,
9. and
10.:
NR 440.26(6)(a)13.
13. When seeking to comply with
sub. (5) (b) 1., when emission data are not obtained because of continuous monitoring system breakdowns, repairs, calibration checks and zero and span adjustments, emission data will be obtained by using one of the following methods to provide emission data for a minimum of 18 hours per day in at least 22 out of 30 following successive calendar days:
NR 440.26(6)(c)
(c) The average coke burn-off rate (Mg (tons) per hour) and hours of operation shall be recorded daily for any fluid catalytic cracking unit catalyst regenerator subject to
sub. (3),
(4) or
(5) (b) 2.
NR 440.26(6)(d)
(d) For any fluid catalytic cracking unit catalyst regenerator under
sub. (3) that uses an incinerator-waste heat boiler to combust the exhaust gases from the catalyst regenerator, the owner or operator shall record daily the rate of combustion of liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are combusted in the incinerator-waste heater boiler.
NR 440.26(6)(e)
(e) For the purpose of reports under
s. NR 440.07 (3), periods of excess emissions that shall be determined and reported are defined as follows:
NR 440.26 Note
Note:
All averages, except for opacity, shall be determined as the arithmetic average of the applicable 1-hour averages, e.g., the rolling 3-hour average shall be determined as the arithmetic average of 3 contiguous 1-hour averages.
NR 440.26(6)(e)1.
1. Opacity. All 1-hour periods that contain 2 or more 6-minute periods during which the average opacity as measured by the continuous monitoring system under
par. (a) 1. exceeds 30%.
NR 440.26(6)(e)2.
2. Carbon monoxide. All 1-hour periods during which the average CO concentration as measured by the CO continuous monitoring system under
par. (a) 2. exceeds 500 ppm.
NR 440.26(6)(e)3.a.a. All rolling 3-hour periods during which the average concentration of SO
2 as measured by the SO
2 continuous monitoring system under
par. (a) 3. exceeds 20 ppm (dry basis, zero percent excess air); or
NR 440.26(6)(e)3.b.
b. All rolling 3-hour periods during which the average concentration of H
2S as measured by the H
2S continuous monitoring system under
par. (a) 4. exceeds 230 mg/dscm (0.10 gr/dscf).
NR 440.26(6)(e)4.a.
a. All 12-hour periods during which the average concentration of SO
2 as measured by the SO
2 continuous monitoring system under
par. (a) 5. exceeds 250 ppm (dry basis, zero percent excess air); or
NR 440.26(6)(e)4.b.
b. All 12-hour periods during which the average concentration of reduced sulfur (as SO
2) as measured by the reduced sulfur continuous monitoring system under
par. (a) 6. exceeds 300 ppm; or
NR 440.26(6)(e)4.c.
c. All 12-hour periods during which the average concentration of SO
2 as measured by the SO
2 continuous monitoring system under
par. (a) 7. exceeds 250 ppm (dry basis, zero percent excess air).
NR 440.26(7)(a)(a) In conducting the performance tests required in
s. NR 440.08, the owner or operator shall use as reference methods and procedures the test methods in Appendix A of
40 CFR part 60, incorporated by reference in
s. NR 440.17, or other methods and procedures as specified in this subsection, except as provided in
s. NR 440.08 (2).
NR 440.26(7)(b)1.1. The emission rate (E) of PM shall be computed for each run using the following equation:
where:
E is the emission rate of PM, kg/Mg (lb/ton) of coke burn-off
cs is the concentration of PM, g/dscm (gr/dscf)
Qsd is the volumetric flow rate of exhaust gas, dscm/hr (dscf/hr)
Rc is the coke burn-off rate, Mg/hr (ton/hr) coke
K is a conversion factor, 1,000 g/kg (7000 gr/lb)
NR 440.26(7)(b)2.
2. Method 5B or 5F shall be used to determine particulate matter emissions and associated moisture content from affected facilities without wet FGD systems; only Method 5B shall be used after wet FGD systems. The sampling time for each run shall be at least 60 minutes and the sampling time for each run shall be at least 0.015 dscm/min (0.53 dscf/min) except that shorter sampling times may be approved by the department when process variables or other factors preclude sampling for at least 60 minutes.
NR 440.26(7)(b)3.
3. The coke burn-off rate (Rc) shall be computed for each run using the following equation:
where:
Rc is the coke burn-off rate, Mg/hr (ton/hr)
Qr is the volumetric flow rate of exhaust gas from catalyst regenerator before entering the emission control system, dscm/min (dscf/min)
Qa is the volumetric flow rate of air to FCCU regenerator, as determined from the fluid catalytic cracking unit control room instrumentation, dscm/min (dscf/min)
%CO2 is the carbon dioxide concentration, percent by volume (dry basis)
%CO is the carbon monoxide concentration, percent by volume (dry basis)
%O2 is the oxygen concentration, percent by volume (dry basis)
K1 is the material balance and conversion factor, 2.982 x 10-4 (Mg-min)/hr-dscm-%) [9.31 x 10
-6 (ton-min)/(hr-dscf-%)]
K2 is the material balance and conversion factor, 2.088 x 10-3 (Mg-min)/(hr-dscm-%) [6.52 x 10
-5 (ton-min)/(hr-dscf-%)]
K3 is the material balance and conversion factor, 9.94 x 10-5 (Mg-min)/(hr-dscm-%) [3.1 x 10-6 (ton-min)/(hr-dscf-%)]
NR 440.26(7)(b)3.b.
b. The emission correction factor, integrated sampling and analysis procedure of Method 3B of
40 CFR part 60, Appendix A, incorporated by reference in
s. NR 440.17 (1), shall be used to determine CO
2, CO and O
2 concentrations.
NR 440.26(7)(c)
(c) If auxiliary liquid or solid fossil fuels are burned in an incinerator-waste heat boiler, the owner or operator shall determine the emission rate of PM permitted in
sub. (3) (b) as follows:
NR 440.26(7)(c)1.
1. The allowable emission rate (E
s) of PM shall be computed for each run using the following equation:
where:
Es is the emission rate of PM allowed, kg/Mg (lb/ton) of coke burn-off in catalyst regenerator
F is the emission standard, 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in catalyst regenerator
A is the allowable incremental rate of PM emission, 7.5 x 10-4 kg/million J (0.10 lb/million Btu)
H is the heat input rate from solid or liquid fossil fuel, million J/hr (million Btu/hr)
Rc is the coke burn-off rate, Mg coke/hr (ton coke/hr)
NR 440.26(7)(c)2.
2. Procedures subject to the approval of the department shall be used to determine the heat input rate.