This is the preview version of the Wisconsin State Legislature site.
Please see http://docs.legis.wisconsin.gov for the production version.
subch. II of ch. NR 214 Subchapter II — Requirements for Specific Land Treatment Systems
NR 214.12 NR 214.12 Absorption pond systems.
NR 214.12(1)(1)Site location criteria.
NR 214.12(1)(a)(a) The absorption pond system shall be located at least 500 feet from the nearest inhabited dwelling, except that this distance may be reduced with the written consent of any affected owners and occupants. The department may require a greater distance depending on the potential for aesthetic and public health impacts.
NR 214.12(1)(b) (b) The system shall be located at least 1,000 feet from a well serving a community public water supply system and at least 250 feet from other potable water supply wells.
NR 214.12(1)(c) (c) The bottom of the absorption pond shall be at least 5 feet from bedrock and the calculated groundwater level. The calculated groundwater level is the elevation of the natural groundwater level plus the calculated mound height.
NR 214.12(1)(d) (d) The system may not be located in the floodway as specified in ch. NR 116. Any system located in the floodplain shall conform to ch. NR 116 and may not be operated when the floodplain is flooded.
NR 214.12(1)(e) (e) Systems shall be constructed in locations other than groundwater recharge areas, whenever possible.
NR 214.12(2) (2)Design and construction criteria.
NR 214.12(2)(a)(a) Absorption pond systems shall consist of either 2 or more cells which can be alternately loaded and rested, or one cell preceded by an effluent storage or stabilization pond system. Where only one cell is provided, the storage or stabilization pond shall be operated on a fill and draw basis and have sufficient capacity to allow intermittent loading of the absorption pond.
NR 214.12(2)(b) (b) In systems with more than one cell, the wastewater distribution system shall be arranged so that individual cells within the absorption pond system can be taken out of service for resting without interrupting the discharge to the remaining cells.
NR 214.12(2)(c) (c) The wastewater discharge system shall be designed to provide even distribution and prevent erosion of the pond bottom.
NR 214.12(2)(d) (d) The shape of each absorption cell shall be such that there are no narrow or elongated portions and no islands, peninsulas or coves.
NR 214.12(2)(e) (e) The minimum top width of an embankment or dike shall be 8 feet. Outside embankment and dike slopes may not be steeper than 3 horizontal to one vertical and shall be properly seeded with a mixture of perennial grasses to prevent erosion. Inside embankments and dikes may not be steeper than 2 horizontal to one vertical and shall be riprapped to prevent erosion.
NR 214.12(2)(f) (f) The bottom of the absorption pond shall be level.
NR 214.12(2)(g) (g) The system shall be constructed in such a manner as to prevent surface runoff from entering the system.
NR 214.12(2)(h) (h) Precautions shall be taken during construction of the system to minimize compaction of absorption areas to prevent a reduction in soil infiltration rate. Project specifications shall detail the specific precautions which will be taken.
NR 214.12(2)(i) (i) Erosion control measures shall be taken during construction to prevent erosion of soil into a surface water.
NR 214.12(3) (3)Discharge limitations.
NR 214.12(3)(a) (a) The discharge to an absorption pond system may not exceed the hydraulic, organic, nitrogen, chloride or other limitations specified in a WPDES permit or plans developed pursuant to a permit requirement. In determining discharge limitations, the department shall consider past operating performance, the ability of the soils to treat the pollutants in the discharge, hydrogeologic characteristics of the site such as permeability and infiltration rates, and other relevant information.
NR 214.12(3)(b) (b) The concentration of any wastewater parameter that may impact groundwater quality shall be limited at the point of discharge to a value that will minimize the concentration of the substance in the groundwater to the extent technically and economically feasible and prevent exceedence of the preventive action limit (PAL) in the groundwater. This will be especially important for parameters, such as dissolved chloride, that do not receive significant treatment in the system.
NR 214.12(3)(c) (c) Since all forms of nitrogen in wastewater can be converted to nitrate-nitrogen in the groundwater moving away from an absorption pond, the average concentration of the sum of all nitrogen species in the absorption pond discharge shall be limited to a value that will minimize the concentration of nitrate-nitrogen in the groundwater to the extent technically and economically feasible and will prevent exceedence of the nitrate plus nitrite-nitrogen PAL in the groundwater.
NR 214.12(3)(d) (d) The average concentration of BOD5 discharged to an absorption pond system shall be restricted to the amount that can be removed in the treatment system.
NR 214.12(3)(e) (e) The hydraulic application rate shall be established based on hydrogeologic conditions, soil texture, soil permeability and waste characteristics. Systems which are to receive more than 10,000 gallons per acre per day are required to perform additional soil testing requirements as specified in s. NR 214.20 (7).
NR 214.12(3)(f) (f) Discharge to the system shall be limited so that the discharge volume combined with the precipitation from a 10-year frequency, 24-hour duration rainfall event does not reduce the available freeboard to less than one foot below the top of the dike.
NR 214.12(3)(g) (g) No discharge to the system may have physical or chemical characteristics which prevent the proper operation of the system.
NR 214.12(4) (4)Discharge monitoring requirements.
NR 214.12(4)(a)(a) The discharge to each absorption pond cell shall be monitored for total daily discharge volume.
NR 214.12(4)(b) (b) The department may require in a WPDES permit that the discharge be monitored for BOD5, total suspended solids, forms of nitrogen, chloride, metals or any other pollutant that may be present. The department shall select the pollutants to be monitored and the required frequency of monitoring on a case-by-case basis by considering the potential public health impacts, probable environmental impact, soil and geologic conditions, past operating performance, concentrations and characteristics of pollutants in the discharge and other relevant information.
NR 214.12(4)(c) (c) The department may require electronic or paper submittal of discharge monitoring reports and land application forms.
NR 214.12(5) (5)Operating requirements.
NR 214.12(5)(a) (a) The absorption pond cells shall be loaded intermittently to allow sufficient resting periods to maintain the absorptive capacity of the soil.
NR 214.12(5)(b) (b) Management plan. The department shall require each absorption pond system owner or operator to submit a management plan for optimizing treatment system performance and demonstrating compliance with the requirements of this chapter. Following approval by the department, the treatment system shall be operated in conformance with the management plan. If the facility wishes to operate differently than specified in the approved plan, a written request shall be submitted to the department for approval to amend the management plan. The plan shall specify information on pretreatment processes, load and rest schedules, scheduled maintenance, weed control and removal, operational strategies for periods of adverse weather, monitoring procedures and any other pertinent information.
NR 214.12(6) (6)Soil investigation and groundwater monitoring requirements. The soil investigation and groundwater monitoring requirements for absorption pond systems are specified in ss. NR 214.20 and 214.21.
NR 214.12 History History: Cr. Register, June, 1990, No. 414, eff. 7-1-90; CR 09-123: cr. (4) (c) Register July 2010 No. 655, eff. 8-1-10.
NR 214.13 NR 214.13 Ridge and furrow systems.
NR 214.13(1)(1)Site location criteria.
NR 214.13(1)(a)(a) The ridge and furrow system shall be located at least 500 feet from the nearest inhabited dwelling, except that this distance may be reduced with the written consent of any affected owners and occupants. The department may require a greater distance depending on the potential for aesthetic and public health impacts.
NR 214.13(1)(b) (b) The ridge and furrow system shall be located at least 1,000 feet from a well serving a community public water supply system and at least 250 feet from other potable water supply wells.
NR 214.13(1)(c) (c) The bottom of the furrows shall be at least 5 feet above bedrock and groundwater.
NR 214.13(1)(d) (d) The system may not be located in the floodway as specified in ch. NR 116. Any system located in the floodplain shall conform to ch. NR 116 and may not be operated when the floodplain is flooded.
NR 214.13(2) (2)Design and construction criteria.
NR 214.13(2)(a)(a) Ridge and furrow systems shall be constructed on sites with soils having 50% or more of the soil particles passing a No. 200 sieve, except that coarser textured soils may be approved on a case-by-case basis depending on system design and wastewater strength. Suitable soils shall extend at least 3 feet below the base grade of the furrow bottoms.
NR 214.13(2)(b) (b) The system shall consist of at least 2 cells which can be alternately loaded and rested, unless there is sufficient storage or pretreatment to allow loading and resting of a single cell.
NR 214.13(2)(c) (c) The system shall be sized and constructed in order to allow sufficient resting to allow soil conditions to become unsaturated and aerobic prior to being loaded.
NR 214.13(2)(d) (d) The shape of each ridge and furrow cell within the system shall be such that a minimum of soil disturbance is necessary to form the system.
NR 214.13(2)(e) (e) The wastewater distribution system shall be constructed so that individual cells within the system can be taken out of service for resting without interrupting the discharge to the remaining cells.
NR 214.13(2)(f) (f) The ridge and furrow system shall be constructed in a manner which provides equal liquid distribution during loading of each cell. The header ditch shall be designed to allow complete drainage after each wastewater loading or lined to prevent wastewater seepage. The header ditch drainage and the grading of the furrows for equal liquid distribution shall be tested before seeding the ridges with grasses.
NR 214.13(2)(g) (g) All outside embankments and dikes may not be steeper than 3 horizontal to one vertical. Inside embankments and dikes may not be steeper than 2 horizontal to one vertical. All embankments and dikes shall be properly seeded with perennial grasses to prevent erosion.
NR 214.13(2)(h) (h) All ridge tops shall be a minimum of 6 feet wide to allow mechanical removal of grasses.
NR 214.13(2)(i) (i) The furrows of the ridge and furrow system shall be one foot deep and one foot wide at the furrow bottom.
NR 214.13(2)(j) (j) Furrow side slopes may not be steeper than one horizontal to 2 vertical.
NR 214.13(2)(k) (k) All areas within a ridge and furrow system shall be accessible for maintenance equipment.
NR 214.13(2)(L) (L) The system shall be constructed to prevent surface runoff from entering the system.
NR 214.13(2)(m) (m) The ridges shall be seeded with perennial grasses which are suited to wet soil conditions. A nurse crop shall be used to seed new or modified systems. In addition, the grass cover shall be established to at least a 2-inch length before the system is used for wastewater treatment.
NR 214.13(2)(n) (n) Precautions shall be taken during construction to minimize compaction of absorption areas to prevent a reduction in soil infiltration rate. Project specifications shall detail the specific precautions which will be taken.
NR 214.13(2)(o) (o) Erosion control measures shall be taken during construction to prevent erosion of soil into a surface water.
NR 214.13(3) (3)Discharge limitations.
NR 214.13(3)(a) (a) The discharge to a ridge and furrow system may not exceed the hydraulic, organic, nitrogen, chloride or other limitations specified in a WPDES permit or plans developed pursuant to a permit requirement. In determining discharge limitations, the department shall consider past operating performance, the ability of the soils to treat the pollutants in the discharge, hydrogeologic characteristics of the site such as permeability and infiltration rates, and other relevant information.
NR 214.13(3)(b) (b) The concentration of any wastewater parameter that may impact groundwater quality shall be limited at the point of discharge to a value that will minimize the concentration of the substance in the groundwater to the extent technically and economically feasible and will prevent exceedence of the preventive action limit (PAL) in the groundwater. This will be especially important for parameters, such as dissolved chloride, that do not receive significant treatment in the system.
NR 214.13(3)(c) (c) The total pounds of nitrogen applied per acre per year shall be limited to the annual nitrogen need of the cover crop plus demonstrable nitrogen losses, such as from denitrification or ammonia volatilization occurring in the treatment system. Determination of the annual pounds of nitrogen applied to the land treatment system shall include the nitrogen supplied by the wastewater, organic nitrogen becoming available to plants and any supplemental fertilizers used.
NR 214.13(3)(d) (d) The average hydraulic application rate may not exceed 10,000 gallons per acre per day for the system.
NR 214.13 Note Note: Based upon the department's experience, the recommended range for the average hydraulic application rate for ridge and furrow systems is 2,000 to 5,000 gallons per acre per day.
NR 214.13(3)(e) (e) Discharge to the system shall be limited so that the discharge volume combined with the precipitation from a 10-year frequency, 24-hour duration rainfall event does not overflow the boundary of the system.
NR 214.13(3)(f) (f) The volume of discharge shall be limited to prevent inundation of the ridges except for temporary conditions following precipitation events.
NR 214.13(4) (4)Discharge monitoring requirements.
NR 214.13(4)(a)(a) The discharge to each cell of the ridge and furrow system shall be monitored for total daily flow.
NR 214.13(4)(b) (b) The department may require in a WPDES permit that the discharge be monitored for BOD5, total suspended solids, forms of nitrogen, chloride, metals or any other pollutant that may be present. The department shall select the pollutants to be monitored and the required frequency of monitoring on a case-by-case basis by considering the potential public health impacts, probable environmental impact, soil and geologic conditions, past operating performance, concentrations and characteristics of pollutants in the discharge and other relevant information.
NR 214.13(4)(c) (c) The department may require electronic or paper submittal of discharge monitoring reports and land application forms.
NR 214.13(5) (5)Operating requirements.
NR 214.13(5)(a) (a) Each spring, the ridge top grasses shall be either cut and removed, or the grasses shall be burned. In addition, the grasses shall be cut and if possible removed at least once later in the growing season.
NR 214.13(5)(b) (b) The discharge shall be alternately distributed to individual sections of the ridge and furrow system to allow sufficient resting periods to maintain the treatment capability of the soil.
NR 214.13(5)(c) (c) The system shall be operated so that individual ridge and furrow sections have sufficient resting to allow soil conditions to become unsaturated and aerobic prior to being loaded.
NR 214.13(5)(d) (d) The system may be used only when at least 5 feet of separation exists between the bottom of the furrows and the groundwater.
NR 214.13(5)(e) (e) Management plan. The department shall require each ridge and furrow system owner or operator to submit a management plan for optimizing treatment system performance and demonstrating compliance with the requirements of this chapter. Following approval by the department, the treatment system shall be operated in conformance with the management plan. If the facility wishes to operate differently than specified in the approved plan, a written request shall be submitted to the department for approval to amend the management plan. The plan shall specify information on pretreatment processes, load and rest schedules, scheduled maintenance, vegetative cover control and removal, operational strategies for periods of adverse weather, monitoring procedures and any other pertinent information.
NR 214.13(6) (6)Soil investigation and groundwater monitoring requirements. The soil investigation and groundwater monitoring requirements for ridge and furrow systems are specified in ss. NR 214.20 and 214.21.
NR 214.13 History History: Cr. Register, June, 1990, No. 414, eff. 7-1-90; CR 09-123: cr. (4) (c) Register July 2010 No. 655, eff. 8-1-10.
NR 214.14 NR 214.14 Spray irrigation systems.
NR 214.14(1)(1)Site location criteria.
NR 214.14(1)(a)(a) A spray irrigation system shall be located at least 1,000 feet from a well serving a community public water supply system and at least 250 feet from other potable water supply wells.
NR 214.14(1)(b) (b) The nearest edge of wastewater spray shall be separated by at least 500 feet from the nearest inhabited dwelling, except that this distance may be reduced with the written consent of any affected owners and occupants. The department may require a greater distance depending on the type of distribution system and potential for aesthetic and public health impacts.
NR 214.14(1)(c) (c) The ground surface of the system shall have a minimum separation distance to bedrock and groundwater of at least 5 feet.
NR 214.14(1)(d) (d) A spray irrigation system may not be located in the floodway as specified in ch. NR 116. Any system located in the floodplain shall conform to ch. NR 116 and may not be operated when the floodplain is flooded.
NR 214.14(2) (2)Design and construction criteria.
NR 214.14(2)(a)(a) The spray application of wastewater to the land surface shall be designed to prevent ponding or runoff and to incorporate a load/rest cycle that optimizes wastewater treatment on the site. The wastewater application intensity shall be limited to the rate that can infiltrate into the soil surface as it is sprayed. The wastewater loading volume shall be designed so the wastewater will be absorbed and held in the top foot of the soil column for treatment. Following wastewater loading, the acreage shall be rested to provide time for soil organisms to biologically decompose organic pollutants in the wastewater, for organic solids on the ground surface to decompose and for the soil column to reaerate.
NR 214.14(2)(b) (b) Table 1 provides values acceptable to the department for the intensity of wastewater spray and the wastewater application volumes for specific soil textures under optimum conditions. Alternate values that can be justified through soil testing results may be approved by the department. The volume applied and the intensity sprayed may be restricted by the department to values less than those listed in Table 1 if site conditions warrant. - See PDF for table PDF
NR 214.14(2)(c) (c) The spray irrigation equipment shall be capable of isolating individual sections of the treatment system for resting without interrupting discharge to acreage scheduled to be loaded with wastewater.
NR 214.14(2)(d) (d) The spray nozzles shall be arranged so that the wastewater will be evenly distributed over the acreage being loaded.
NR 214.14(2)(e) (e) The spray nozzle openings shall be sized to prevent plugging and located as near to the ground surface as practical to minimize wind drift of the wastewater.
Loading...
Loading...
Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.