DHS 157.76(2)(d)1.1. Neither the length nor the width of the x-ray field in the plane of the image receptor shall exceed that of the visible area of the image receptor by more than 3% of the source to image distance. The sum of the excess length and the excess width shall be no greater than 4% of the source to image distance. DHS 157.76(2)(d)2.2. For rectangular x-ray fields used with circular image receptors, the error in alignment shall be determined along the length and width dimensions of the x-ray field which pass through the center of the visible area of the image receptor. DHS 157.76(2)(e)(e) For fluoroscopic equipment manufactured on or after June 10, 2006, other than radiation therapy simulation systems, the maximum area of the x-ray field in the plane of the image receptor shall conform to one of the following requirements: DHS 157.76(2)(e)1.1. When any linear dimension of the visible area of the image receptor measured through the center of the visible area is less than or equal to 34 cm in any direction, at least 80% of the area of the x-ray field overlaps the visible area of the image receptor. DHS 157.76(2)(e)2.2. When any linear dimension of the visible area of the image receptor measured through the center of the visible area is greater than 34 cm in any direction, the x-ray field measured along the direction of greatest misalignment with the visible area of the image receptor does not extend beyond the edge of the visible area of the image receptor by more than 2 cm. DHS 157.76(2)(f)(f) For x-ray systems with inherently rectangular image receptors manufactured on or after June 10, 2006, all the following applies: DHS 157.76(2)(f)1.1. Neither the length nor the width of the x-ray field in the plane of the image receptor shall exceed that of the visible area of the image receptor by more than 3% of the source to image distance. The sum of the excess length and the excess width shall be no greater than 4% of the source to image distance. DHS 157.76(2)(f)2.2. The error in alignment shall be determined along the length and width dimensions of the x-ray field which pass through the center of the visible area of the image receptor. DHS 157.76(2)(g)(g) If the fluoroscopic x-ray field size is adjusted automatically as the source to image distance or image receptor size is changed, a capability may be provided for overriding the automatic adjustment in case of system failure. If it is so provided, a signal visible at the fluoroscopist’s position shall indicate whenever the automatic field adjustment is overridden. Each such system failure override switch shall be clearly labeled as follows: For X-ray Field Limitation System Failure
DHS 157.76(3)(3) Activation of tube. X-ray production in the fluoroscopic mode shall be controlled by a device which requires continuous pressure by the operator for the entire time of any exposure. When recording serial radiographic images from the fluoroscopic image receptor, the operator shall be able to terminate the x-ray exposure at any time, but means may be provided to permit completion of any single exposure of the series in process. DHS 157.76(4)(a)(a) Fluoroscopic equipment manufactured before May 19, 1995 shall meet all the following requirements: DHS 157.76(4)(a)1.1. Equipment provided with automatic exposure rate control shall not be operable at any combination of tube potential and current that will result in an air kerma rate in excess of 88 mGy per minute (10 R/min) at the measurement point specified in par. (e), except as specified in par. (e) 6. DHS 157.76(4)(a)2.2. Equipment provided without automatic exposure rate control shall not be operable at any combination of tube potential and current that will result in an air kerma rate in excess of 44 mGy per minute (5 R/min) at the measurement point specified in par. (e), except as specified in par. (e) 6. DHS 157.76(4)(a)3.3. Equipment provided with both an automatic exposure rate control mode and a manual mode shall not be operable at any combination of tube potential and current that will result in an air kerma rate in excess of 88 mGy per minute (10 R/min) in either mode at the measurement point specified in par. (e), except as specified in par. (e) 6. DHS 157.76(4)(a)4.4. Equipment may be modified in accordance with 21 CFR 1020.30(q) to comply with par. (a). When the equipment is modified, it shall bear a label indicating the date of the modification and the statement: DHS 157.76(4)(b)2.2. When a mode of operation has an optional high-level control, in which case that mode shall not be operable at any combination of tube potential and current that will result in an air kerma rate in excess of the rates specified in this subsection at the measurement point specified in par. (e), unless the high-level control is activated. Special means of activation of high-level controls shall be required. The high-level control shall be operable only when continuous manual activation is provided by the operator. A continuous signal audible to the fluoroscopist shall indicate that the high-level control is being employed. DHS 157.76(4)(c)(c) Fluoroscopic equipment manufactured on or after May 19, 1995 shall meet all the following requirements: DHS 157.76(4)(c)1.1. Equipped with automatic exposure rate control if operable at any combination of tube potential and current that results in an air kerma rate greater than 44 mGy per minute (5 R/min) at the measurement point specified in this subsection. Provision for manual selection of technique factors may be provided. DHS 157.76(4)(c)2.2. Not be operable at any combination of tube potential and current that will result in an air kerma rate in excess of 88 mGy per minute (10 R/min) at the measurement point specified in par. (e) DHS 157.76(4)(d)1.1. For equipment manufactured prior to June 10, 2006, during the recording of images from a fluoroscopic image receptor using photographic film or a video camera when the x-ray source is operated in a pulsed mode. DHS 157.76(4)(d)2.2. For equipment manufactured on or after June 10, 2006, during the recording of images from the fluoroscopic image receptor for the purpose of providing the user with a recorded image after termination of exposure. Such recording does not include images resulting from a last image-hold feature that are not recorded. DHS 157.76(4)(d)3.3. When a mode of operation has an optional high-level control and the control is activated, in which case the equipment shall not be operable at any combination of tube potential and current that will result in an air kerma rate in excess of 176 mGy per minute (20 R/min) at the measurement point specified par. (e). Special means of activation of high-level controls shall be required. The high-level control shall be operable only when continuous manual activation is provided by the operator. A continuous signal audible to the fluoroscopist shall indicate that the high-level control is being employed. DHS 157.76(4)(e)1.1. If the source is below the x-ray table, the air kerma rate shall be measured at 1 cm above the tabletop or cradle. DHS 157.76(4)(e)2.2. If the source is above the x-ray table, the air kerma rate shall be measured at 30 cm above the tabletop with the end of the beam-limiting device or spacer positioned as closely as possible to the point of measurement. DHS 157.76(4)(e)3.3. In a C-arm type of fluoroscope, the air kerma rate shall be measured at 30 cm from the input surface of the fluoroscopic imaging assembly, with the source positioned at any available source to image distance, provided that the end of the beam limiting device or spacer is no closer than 30 cm from the input surface of the fluoroscopic imaging assembly. DHS 157.76(4)(e)4.4. In a C-arm type of fluoroscope having an source to image distance less than 45 cm, the air kerma rate shall be measured at the minimum source to skin distance. DHS 157.76(4)(e)5.5. In a lateral type of fluoroscope, the air kerma rate shall be measured at a point 15 cm from the centerline of the x-ray table and in the direction of the x-ray source with the end of the beam limiting device or spacer positioned as closely as possible to the point of measurement. If the tabletop is movable, it shall be positioned as closely as possible to the lateral x-ray source, with the end of the beam-limiting device or spacer no closer than 15 cm to the centerline of the x-ray table. DHS 157.76(4)(e)6.6. Fluoroscopic radiation therapy simulation systems are exempt from this paragraph. DHS 157.76(5)(5) Indication of potential and current. During fluoroscopy and cinefluorography, x-ray tube potential and current shall be continuously indicated. Deviation of x-ray tube potential and current from the indicated values shall not exceed the maximum deviation as stated by the manufacturer in accordance with 21 CFR 1020.30 (h) (3). DHS 157.76(6)(a)(a) Means shall be provided to limit the source to skin distance to not less than 38 cm on stationary fluoroscopes and to not less than 30 cm on mobile and portable fluoroscopes. In addition, for fluoroscopes intended for specific surgical application that would be prohibited at the source-skin distances specified in this paragraph, provisions may be made for operation at shorter source-skin distances but in no case less than 20 cm. DHS 157.76(6)(b)(b) For stationary, mobile, or portable C-arm fluoroscopic systems manufactured on or after June 10, 2006, having a maximum source-image receptor distance of less than 45 cm, means shall be provided to limit the source-skin distance to not less than 19 cm. Such systems shall be labeled for extremity use only. In addition, for those systems intended for specific surgical application that would be prohibited at the source-skin distances specified in this paragraph, provisions may be made for operation at shorter source-skin distances but in no case less than 10 cm. DHS 157.76(7)(7) Fluoroscopic irradiation time, display, and signal. DHS 157.76(7)(a)(a) Fluoroscopic equipment manufactured before June 10, 2006, shall be provided with means to preset the cumulative irradiation time of the fluoroscopic tube. The maximum cumulative time of the timing device shall not exceed 5 minutes without resetting. A signal audible to the fluoroscopist shall indicate the completion of any preset cumulative Irradiation time. Such signal shall continue to sound while x-rays are produced until the timing device is reset. DHS 157.76(7)(b)(b) As an alternative to the requirements of par. (a), radiation therapy simulation systems may be provided with a means to indicate the total cumulative exposure time during which x-rays were produced, and which is capable of being reset between x-ray examinations. DHS 157.76(7)(c)(c) For x-ray controls manufactured on or after June 10, 2006, all of the following shall be provided for each fluoroscopic tube: DHS 157.76(7)(c)1.1. A display of the fluoroscopic irradiation time at the fluoroscopist’s working position. DHS 157.76(7)(c)2.2. The display required in subd. 1. shall function independently of the audible signal described in par. (a) and meet all the following requirements: DHS 157.76(7)(c)2.a.a. When the x-ray tube is activated, the fluoroscopic irradiation time in minutes and tenths of minutes shall be continuously displayed and updated at least once every 6 seconds. DHS 157.76(7)(c)2.b.b. The fluoroscopic irradiation time shall also be displayed within 6 seconds of termination of an exposure and remain displayed until reset. DHS 157.76(7)(c)2.c.c. Means shall be provided to reset the display to zero prior to the beginning of a new examination or procedure. DHS 157.76(7)(c)3.3. A signal audible to the fluoroscopist shall sound for each passage of 5 minutes of fluoroscopic irradiation time during an examination or procedure. The signal shall sound until manually reset or, if automatically reset, for at least 2 seconds. DHS 157.76(8)(8) Mobile and portable fluoroscopes. Mobile and portable fluoroscopes shall use image-intensification or a direct-digital receptor. DHS 157.76(9)(a)(a) Fluoroscopic equipment manufactured on or after June 10, 2006, shall be equipped with means to display the last image following termination of the fluoroscopic exposure. DHS 157.76(9)(b)(b) For an LIH obtained by retaining pre-termination fluoroscopic images, if the number of images and method of combining images are selectable by the user, the selection shall be indicated prior to initiation of the fluoroscopic exposure. DHS 157.76(9)(c)(c) For an LIH image obtained by initiating a separate radiographic-like exposure at the termination of fluoroscopic imaging, the technique factors for the LIH image shall be selectable prior to the fluoroscopic exposure, and the combination selected shall be indicated prior to initiation of the fluoroscopic exposure. DHS 157.76(9)(d)(d) Means shall be provided to clearly indicate to the user whether a displayed image is the LIH radiograph or fluoroscopy. Display of the LIH radiograph shall be replaced by the fluoroscopic image concurrently with re-initiation of fluoroscopic exposure, unless separate displays are provided for the LIH radiograph and fluoroscopic images. DHS 157.76(9)(e)(e) The predetermined or selectable options for producing the LIH radiograph shall be described in the information required by 21 CFR 1020.30 (h). The information shall include a description of any technique factors applicable for the selected option and the impact of the selectable options on image characteristics and the magnitude of radiation emissions. DHS 157.76(10)(10) Displays of values of air kerma rate and cumulative air kerma. Fluoroscopic equipment manufactured on or after June 10, 2006, shall display at the fluoroscopist’s working position the air kerma rate and cumulative air kerma. Each x-ray tube used during an examination or procedure shall meet all the following requirements: DHS 157.76(10)(a)(a) When the x-ray tube is activated and the number of images produced per unit time is greater than 6 images per second, the air kerma rate in mGy/min shall be continuously displayed and updated at least once every second. DHS 157.76(10)(b)(b) The cumulative air kerma in units of mGy shall be displayed either within 5 seconds of termination of an exposure or displayed continuously and updated at least once every 5 seconds. DHS 157.76(10)(c)(c) The display of the air kerma rate shall be clearly distinguishable from the display of the cumulative air kerma. DHS 157.76(10)(d)1.1. The air kerma rate and cumulative air kerma shall represent the value for conditions of free-in-air irradiation at one of the referenced locations. DHS 157.76(10)(d)2.2. For fluoroscopes with x-ray source below the x-ray table, x-ray source above the table, or of lateral type, the reference locations shall be the respective locations specified in sub. (4) for measuring compliance with air kerma rate limits. DHS 157.76(10)(d)3.3. For C-arm fluoroscopes, the reference location shall be 15 cm from the isocenter toward the x-ray source along the beam axis. Alternatively, the reference location shall be at a point specified by the manufacturer to represent the location of the intersection of the x-ray beam with the patient’s skin. DHS 157.76 NoteNote: The reference location is identified and described specifically in the information provided to users according to 21 CFR 1020.30 (h) (6) (iii). DHS 157.76(10)(e)(e) Means shall be provided to reset to zero the display of cumulative air kerma prior to the commencement of a new examination or procedure. DHS 157.76(10)(f)(f) The displayed air kerma rate and cumulative air kerma shall not deviate from the actual values by more than ±35 percent over the range of 6 mGy/min and 100 mGy to the maximum indication of air kerma rate and cumulative air kerma, respectively. Compliance shall be determined with an irradiation time greater than 3 seconds. DHS 157.76(11)(a)(a) The registrant shall ensure that only a licensed practitioner or a radiologic technologist who is trained in the safe use of fluoroscopic x-ray systems is allowed to operate these systems. All fluoroscopic x-ray images shall be viewed, directly or indirectly, and interpreted by a licensed practitioner. DHS 157.76(11)(b)(b) The use of fluoroscopic x-ray systems by radiologic technologists shall be performed under the supervision of a licensed practitioner for the purpose of localization to obtain images for diagnostic purposes. DHS 157.76(11)(c)(c) Radiologic technology students may not operate fluoroscopic x-ray systems except under the direct supervision of a licensed practitioner or radiologic technologist. DHS 157.76(11)(d)(d) Fluoroscopic x-ray systems may not be used as a positioning tool for general purpose radiographic examinations. DHS 157.76(11)(e)(e) The registrant shall require the operator of a fluoroscopic x-ray system to meet either of the following requirements: DHS 157.76(12)(12) Air kerma measurements. Annual measurements of both typical and maximum air kerma shall be made by a medical physicist or a person approved by a medical physicist. DHS 157.76 NoteNote: Materials should be placed in the useful beam to protect the imaging system when conducting these periodic measurements. Air kerma measurements do not include backscatter.
DHS 157.76 HistoryHistory: CR 01-108: cr. Register July 2002 No. 559, eff. 8-1-02; CR 06-021: r. and recr. Register October 2006 No. 610, eff. 11-1-06; CR 09-062: cr. (11) and (12) Register April 2010 No. 652, eff. 5-1-10; CR 16-078: r. and recr. (7) (c), cr. (7) (d), am. (11) (a) Register January 2018 No. 745, eff. 2-1-18; correction in (7) (c) 2. made under s. 35.17, Stats., Register January 2018 No. 745; CR 22-015: am. (intro.), (2) (b), (8) Register June 2023 No. 810, eff. 7-1-23. DHS 157.77DHS 157.77 General purpose radiographic systems.
/code/admin_code/dhs/110/157
true
administrativecode
/code/admin_code/dhs/110/157/viii/76/4/e/1
Department of Health Services (DHS)
Chs. DHS 110-199; Health
administrativecode/DHS 157.76(4)(e)1.
administrativecode/DHS 157.76(4)(e)1.
section
true