where:
Vmax is the maximum permitted velocity, m/sec (ft/sec)
K4 is 28.8 for metric units and 1212 for English units
K5 is 31.7 for metric units and 850.8 for English units
HT is the net heating value as determined in par. (f), MJ/scm (Btu/scf)
NR 440.647(6)(g)3.3. The maximum permitted velocity, Vmax, for air-assisted flares shall be determined by the following equation:
+
=
where:
Vmax is the maximum permitted velocity, m/sec (ft/sec)
K6 is 8.706 m/sec for metric units and 28.56 ft/sec for English units
K7 is 0.7084 [(m/sec)/(MJ/scm)] for metric units and 0.00245 [(ft/sec)/(Btu/scf)] for English units
HT is the net heating value as determined in par. (f), MJ/scm (Btu/scf)
NR 440.647(6)(g)4.4. The actual exit velocity of a flare shall be determined by dividing the volumetric flow rate (in units of standard temperature and pressure), as determined by Method 2, 2A, 2C or 2D as appropriate, by the unobstructed (free) cross sectional area of the flare tip.
NR 440.647(6)(h)(h) The owner or operator shall determine compliance with the mass emission per mass product standards in sub. (1) (d) and (e) and in sub. (3) (b) 1. a., (c) 1. a. 1), b. 1), 2. a. and b. 1).
NR 440.647(6)(h)1.1. The emission rate of TOC shall be computed using the following equation:
=
where:
ERTOC is the emission rate of total organic compounds, minus methane and ethane, kg TOC/Mg product (lb TOC/ton)
ETOC is the emission rate of total organic compounds, minus methane and ethane, in the sample, kg/hr (lb/hr)
Pp is the rate of polymer production, kg/hr (lb/hr)
K5 is 1,000 kg/Mg for metric units and 2,000 lb/ton for English units
NR 440.647(6)(h)2.2. The mass rate of TOC, ETOC, shall be determined according to the procedures, as appropriate, in par. (c) 2. The sampling site for determining compliance with sub. (1) (d) and (e) shall be before any add-on control devices and after all product recovery devices. Otherwise, the sampling site shall be at the outlet of the control device.
NR 440.647(6)(h)3.3. The rate of polymer production, Pp, shall be determined by dividing the weight of polymer pulled (in kg (lb)) from the process line during the performance test by the number of hours taken to perform the performance test. The weight of polymer pulled shall be determined by direct measurement or, subject to prior approval by the department, computed from materials balance by good engineering practice.
NR 440.647(6)(i)(i) The owner or operator shall determine continuous compliance with the temperature requirements in sub. (3) (b) 1. b. and 1. a. 2) by using the temperature monitoring equipment described in sub. (5) (a) 1. An average temperature shall be determined from measurements taken at least every 15 minutes every 3 hours while the vent stream is normally routed and constituted. Each 3-hour period constitutes a performance test.
NR 440.647(6)(j)(j) For purposes of determining compliance with sub. (3) (c) 1. b. 2), 3), 2. b. 2) or 3), the ethylene glycol concentration in either the cooling tower or the liquid effluent from steam-jet ejectors used to produce a vacuum in the polymerization reactors, whichever is applicable, shall be determined:
NR 440.647(6)(j)1.1. Using procedures that conform to the methods described in ASTM D2908-91, Standard Practice for Measuring Volatile Organic Matter in Water by Aqueous-Injection Gas Chromatography, incorporated by reference in s. NR 440.17 (2) (a) 37., except as provided in subd. 2.:
NR 440.647(6)(j)1.a.a. At least one sample per operating day shall be collected using the grab sampling procedures of ASTM D3370-95a, Standard Practices for Sampling Water, incorporated by reference in s. NR 440.17 (2) (a) 47. An average ethylene glycol concentration by weight shall be calculated on a daily basis over a rolling 14-day period of operating days, except as provided in subd. 1. b. and c. Each daily average ethylene glycol concentration so calculated constitutes a performance test. Exceedance of the standard during the reduced testing program specified in subd. 1. b. and c. is a violation of these standards.
NR 440.647(6)(j)1.b.b. For those determining compliance with sub. (3) (c) 1. b. 2) or 2. b. 2), the owner or operator may elect to reduce the sampling program to any 14 consecutive day period once every 2 calendar months, if at least 17 consecutive 14-day rolling average concentrations immediately preceding the reduced sampling program are each less than 0.10 weight percent ethylene glycol. If the average concentration obtained over the 14 day sampling during the reduced testing period exceeds the upper 95% confidence interval calculated from the most recent test results in which no one 14-day average exceeded 0.10 weight percent ethylene glycol, then the owner or operator shall reinstitute a daily sampling program. A reduced sampling program can be reinstituted if the requirements specified in this paragraph are met.
NR 440.647(6)(j)1.c.c. For those determining compliance with sub. (3) (c) 1. b. 3) or 2. b. 3) the owner or operator may elect to reduce the sampling program to any 14 consecutive day period once every 2 calendar months, if at least 17 consecutive 14-day rolling average concentrations immediately preceding the reduced sampling program are each less than 1.8 weight percent ethylene glycol. If the average concentration obtained over the 14 day sampling during the reduced test period exceeds the upper 95% confidence interval calculated from the most recent test results in which no one 14-day average exceeded 1.8 weight percent ethylene glycol, then the owner or operator shall reinstitute a daily sampling program. A reduced program can be reinstituted if the requirements specified in this paragraph are met.