NR 440.19(7)(b)2.2. Method 5 shall be used to determine the particulate matter concentration (C) at affected facilities without wet flue-gas-desulfurization (FGD) systems and Method 5B shall be used to determine the particulate matter concentration (C) after FGD systems.
NR 440.19(7)(b)2.a.a. The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf). The probe and filter holder heating systems in the sampling train shall be set to provide an average gas temperature of 160±14°C (320±25°F).
NR 440.19(7)(b)2.b.b. The emission rate correction factor, integrated or grab sampling and analysis procedure of Method 3B shall be used to determine the O2 concentration (%O2). The O2 sample shall be obtained simultaneously with, and at the same traverse points as, the particulate sample. If the grab sampling procedure is used, the O2 concentration for the run shall be the arithmetic mean of the sample O2 concentrations at all traverse points.
NR 440.19(7)(b)2.c.c. If the particulate run has more than 12 traverse points, the O2 traverse points may be reduced to 12 provided that Method 1 is used to locate the 12 O2 traverse points.
NR 440.19(7)(b)3.3. Method 9 and the procedures in s. NR 440.11 shall be used to determine opacity.
NR 440.19(7)(b)4.4. Method 6 shall be used to determine the SO2 concentration.
NR 440.19(7)(b)4.a.a. The sampling site shall be the same as that selected for the particulate sample. The sampling location in the duct shall be at the centroid of the cross section or at a point no closer to the walls than 1 m (3.28 ft). The sampling time and sample volume for each sample run shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Two samples shall be taken during a 1-hour period, with each sample taken within a 30-minute interval.
NR 440.19(7)(b)4.b.b. The emission rate correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine the O2 concentration (%O2). The O2 sample shall be taken simultaneously with, and at the same point as, the SO2 sample. The SO2 emission rate shall be computed for each pair of SO2 and O2 samples. The SO2 emission rate (E) for each run shall be the arithmetic mean of the results of the 2 pairs of samples.
NR 440.19(7)(b)5.5. Method 7 shall be used to determine NOx concentration.
NR 440.19(7)(b)5.a.a. The sampling site and location shall be the same as for the SO2 sample. Each run shall consist of 4 grab samples, with each sample taken at about 15-minute intervals.
NR 440.19(7)(b)5.b.b. For each NOx sample, the emission rate correction factor, grab sampling and analysis procedure of Method 3B shall be used to determine the O2 concentration (%O2). The sample shall be taken simultaneously with, and at the same point as, the NOx sample.
NR 440.19(7)(b)5.c.c. The NOx emission rate shall be computed for each pair of NOx and O2 samples. The NOx emission rate (E) for each run shall be the arithmetic mean of the results of the 4 pairs of samples.
NR 440.19(7)(c)(c) When combinations of fossil fuels or fossil fuel and wood residue are fired, the owner or operator, in order to compute the prorated standard as shown in subs. (4) (b) and (5) (b), shall determine the percentage (w, x, y, or z) of the total heat input derived from each type of fuel as follows:
NR 440.19(7)(c)1.1. The heat input rate of each fuel shall be determined by multiplying the gross calorific value of each fuel fired by the rate of each fuel burned.
NR 440.19(7)(c)2.2. ASTM method D2015-96 or D5865-98 (solid fuels), D240-92 (liquid fuels) or D1826-94 (gaseous fuels), incorporated by reference in s. NR 440.17 (2) (a) 26., 66., 9. and 21., respectively, shall be used to determine the gross calorific values of the fuels. The method used to determine the calorific value of wood residue shall be approved by the department.
NR 440.19(7)(c)3.3. Suitable methods shall be used to determine the rate of each fuel burned during each test period, and a material balance over the steam generating system shall be used to confirm the rate.
NR 440.19(7)(d)(d) The owner or operator may use the following as alternatives to the reference methods and procedures in this subsection or in other subsections as specified:
NR 440.19(7)(d)1.1. The emission rate (E) of particulate matter, SO2 and NOx may be determined by using the Fc factor, provided that the following procedure is used:
NR 440.19(7)(d)1.a.a. The emission rate (E) shall be computed using the following equation:
E = CFc (100/%CO2)
where:
E is the emission rate of pollutant, ng/J (lb/million Btu)
C is the concentration of pollutant, ng/dscm (lb/dscf)
%CO2 is the carbon dioxide concentration, percent dry basis
Fc is the factor as determined in appropriate sections of Method 19
NR 440.19(7)(d)1.b.b. If and only if the average Fc factor in Method 19 is used to calculate E and either E is from 0.97 to 1.00 of the emission standard or the relative accuracy of a continuous emission monitoring system is from 17 to 20%, then 3 runs of Method 3 shall be used to determine the O2 and CO2 concentration according to the procedures in sub. (7) (b) 2. b., 4. b. or 5. b. Then if Fo (average of 3 runs), as calculated from the equation in Method 3B, is more than ±3% than the average Fo value, as determined from the average values of Fd and Fc in Method 19, that is, Foa = 0.209 (Fda/Fca), then the following procedure shall be followed:
1) When Fo is less than 0.97 Foa, then E shall be increased by that proportion under 0.97 Foa. For example, if Fo is 0.95 Foa, E shall be increased by 2%. This recalculated value shall be used to determine compliance with the emission standard.
2) When Fo is less than 0.97 Foa and when the average difference (d) between the continuous monitor minus the reference methods is negative, then E shall be increased by that proportion under 0.97 Foa. For example, if Fo is 0.95 Foa, E shall be increased by 2%. This recalculated value shall be used to determine compliance with the relative accuracy specification.
3) When Fo is greater than 1.03 Foa and when the average difference d is positive, then E shall be decreased by that proportion over 1.03 Foa. For example, if Fo is 1.05 Foa, E shall be decreased by 2%. This recalculated value shall be used to determine compliance with the relative accuracy specification.