NR 440.45(5)(f)2.2. Quarterly accuracy determinations and daily calibration drift tests shall be performed in accordance with Procedure 1 of 40 CFR part 60, Appendix F, incorporated by reference in s. NR 440.17 (1).
NR 440.45(6)(6)Test methods and procedures.
NR 440.45(6)(a)(a) In conducting the performance tests required in s. NR 440.08, the owner or operator shall use as reference methods and procedures the test methods in Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17, or other methods and procedures in this subsection, except as provided in s. NR 440.08 (2). Acceptable alternative methods and procedures are given in par. (f).
NR 440.45(6)(b)(b) The owner or operator shall determine compliance with the particulate matter standards in sub. (3) (a) 1. and 3. as follows:
NR 440.45(6)(b)1.1. Method 5 shall be used to determine the particulate matter concentration. The sampling time and sample volume for each run shall be at least 60 minutes and 0.90 dscm (31.8 dscf). Water shall be used as the cleanup solvent instead of acetone in the sample recovery procedure. The particulate concentration shall be corrected to the appropriate oxygen concentration according to sub. (5) (c) 3.
NR 440.45(6)(b)2.2. The emission rate correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine the oxygen concentration. The gas sample shall be taken at the same time and at the same traverse points as the particulate sample.
NR 440.45(6)(b)3.3. Method 9 and the procedures in s. NR 440.11 shall be used to determine opacity.
NR 440.45(6)(c)(c) The owner or operator shall determine compliance with the particulate matter standard in sub. (3) (a) 2. as follows:
NR 440.45(6)(c)1.1. The emission rate (E) of particulate matter shall be computed for each run using the following equation:
E = cs Qsd/BLS
where:
E is the emission rate of particulate matter, g/kg (lb/ton) of BLS
cs is the concentration of particulate matter, g/dscm (lb/dscf)
Qsd is the volumetric flow rate of effluent gas, dscm/hr (dscf/hr)
BLS is the black liquor solids (dry weight) feed rate, kg/hr (ton/hr)
NR 440.45(6)(c)2.2. Method 5 shall be used to determine the particulate matter concentration (cs) and the volumetric flow rate (Qsd) of the effluent gas. The sampling time and sample volume shall be at least 60 minutes and 0.90 dscm (31.8 dscf). Water shall be used instead of acetone in the sample recovery.
NR 440.45(6)(c)3.3. Process data shall be used to determine the black liquor solids (BLS) feed rate on a dry weight basis.
NR 440.45(6)(d)(d) The owner or operator shall determine compliance with the TRS standards in sub. (4), except sub. (4) (a) 1. f. and 4., as follows:
NR 440.45(6)(d)1.1. Method 16 shall be used to determine the TRS concentration. The TRS concentration shall be corrected to the appropriate oxygen concentration using the procedure in sub. (5) (c) 3. The sampling time shall be at least 3 hours, but no longer than 6 hours.
NR 440.45(6)(d)2.2. The emission rate correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine the oxygen concentration. The sample shall be taken over the same time period as the TRS samples.
NR 440.45(6)(d)3.3. When determining whether a furnace is a straight kraft recovery furnace or a cross recovery furnace, TAPPI Method T624, incorporated by reference in s. NR 440.17, shall be used to determine sodium sulfide, sodium hydroxide, and sodium carbonate. These determinations shall be made 3 times daily from the green liquor, and the daily average values shall be converted to sodium oxide (Na2O) and substituted into the following equation to determine the green liquor sulfidity:
where:
GLS is the green liquor sulfidity, percent
is the concentration of
as
, mg/liter (gr/gal)
is the concentration of NaOH as
, mg/liter (gr/gal)
is the concentration of
as
, mg/liter (gr/gal)
NR 440.45(6)(e)(e) The owner or operator shall determine compliance with the TRS standards in sub. (4) (a) 1. f. and 4. as follows:
NR 440.45(6)(e)1.1. The emission rate (E) of TRS shall be computed for each run using the following equation:
where: