NR 440.26(4)(a)(a) No owner or operator subject to the provisions of this section may discharge or cause the discharge into the atmosphere from any fluid catalytic cracking unit catalyst regenerator any gases that contain carbon monoxide (CO) in excess of 500 ppm by volume (dry basis). NR 440.26(5)(5) Standard for sulfur dioxide. Each owner or operator that is subject to the requirements of this section shall comply with the emission limitations set forth in this subsection on and after the date on which the initial performance test, required by s. NR 440.08, is completed, but not later than 60 days after achieving the maximum production rate at which the affected facility will be operated, or 180 days after initial startup, whichever comes first. NR 440.26(5)(a)(a) No owner or operator subject to the provisions of this section may: NR 440.26(5)(a)1.1. Burn in any fuel gas combustion device any fuel gas that contains hydrogen sulfide (H2S) in excess of 230 mg/dscm (0.10 gr/dscf). The combustion in a flare of process upset gases or fuel gas that is released to the flare as a result of relief valve leakage or other emergency malfunctions is exempt from this paragraph. NR 440.26(5)(a)2.2. Discharge or cause the discharge of any gases into the atmosphere from any Claus sulfur recovery plant containing in excess of: NR 440.26(5)(a)2.a.a. For an oxidation control system or a reduction control system followed by incineration, 250 ppm by volume (dry basis) of sulfur dioxide (SO2) at zero percent excess air. NR 440.26(5)(a)2.b.b. For a reduction control system not followed by incineration, 300 ppm by volume of reduced sulfur compounds and 10 ppm by volume of hydrogen sulfide (H2S), each calculated as ppm SO2 by volume (dry basis) at zero percent excess air. NR 440.26(5)(b)(b) Each owner or operator that is subject to the provisions of this section shall comply with one of the following conditions for each affected fluid catalytic cracking unit catalyst regenerator: NR 440.26(5)(b)1.1. With an add-on control device, reduce sulfur dioxide emissions to the atmosphere by 90% or maintain sulfur dioxide emissions to the atmosphere less than or equal to 50 ppm by volume (ppmv), whichever is less stringent. NR 440.26(5)(b)2.2. Without the use of an add-on control device, maintain sulfur oxides emissions calculated as sulfur dioxide to the atmosphere less than or equal to 9.8 kg/Mg (20 lb/ton) coke burn-off. NR 440.26(5)(b)3.3. Process in the fluid catalytic cracking unit fresh feed that has a total sulfur content no greater than 0.30% by weight. NR 440.26(5)(c)(c) Compliance with par. (b) 1., 2. or 3. is determined daily on a 7-day rolling average basis using the appropriate procedures outlined in sub. (7). NR 440.26(5)(d)(d) A minimum of 22 valid days of data shall be obtained every 30 rolling successive calendar days when complying with par. (b) 1. NR 440.26(6)(a)(a) Continuous monitoring systems shall be installed, calibrated, maintained and operated by the owner or operator subject to the provisions of this section as follows: NR 440.26(6)(a)1.1. For fluid catalytic cracking unit catalyst regenerators subject to sub. (3) (a) 2., an instrument for continuously monitoring and recording the opacity of emission into the atmosphere. The instrument shall be spanned at 60, 70 or 80% opacity. NR 440.26(6)(a)2.2. For fluid catalytic cracking unit catalyst regenerators subject to sub. (4) (a), an instrument for continuously monitoring and recording the concentration by volume (dry basis) of CO emission into the atmosphere, except as provided in subd. 2. b. NR 440.26(6)(a)2.b.b. A CO continuous monitoring system need not be installed if the owner or operator demonstrates that the average CO emission are less than 50 ppm on a dry basis and also files a written request for exemption to the department and receives an exemption. The demonstration shall consist of continuously monitoring CO emissions for 30 days using an instrument that shall meet the requirements of Performance Specification 4 of Appendix B of 40 CFR part 60, incorporated by reference in s. NR 440.17. The span value shall be 100 ppm CO instead of 1,000 ppm, and the relative accuracy limit shall be 10% of the average CO emission or 5 ppm CO, whichever is greater. For instruments that are identical to Method 10 of Appendix A of 40 CFR part 60, incorporated by reference in s. NR 440.17, and employ the sample conditioning system of Method 10A of Appendix A, the alternative relative accuracy test procedure in s. 10.1 of Performance Specification 2 of Appendix B may be used in place of the relative accuracy test. NR 440.26(6)(a)3.3. For fuel gas combustion devices subject to sub. (5) (a) 1., an instrument for continuously monitoring and recording the concentration by volume (dry basis, zero percent excess air) of SO2 emissions into the atmosphere, except where an H2S monitor is installed under par. (a) 4. The monitor shall include an oxygen monitor for correcting the data for excess air. NR 440.26(6)(a)3.b.b. The SO2 monitoring level equivalent to the H2S standard under sub. (5) (a) 1. shall be 20 ppm (dry basis, zero percent excess air). NR 440.26(6)(a)3.c.c. The performance evaluations for this SO2 monitor under s. NR 440.13 (3) shall use Performance Specification 2 of 40 CFR part 60, Appendix B, incorporated by reference in s. NR 440.17 (1). Methods 6 or 6C and 3 or 3A of 40 CFR part 60, Appendix A, incorporated by reference in s. NR 440.17 (1), shall be used for conducting the relative accuracy evaluations. Method 6 samples shall be taken at a flow rate of approximately 2 liters/min for at least 30 minutes. The relative accuracy limit shall be 20% or 4 ppm, whichever is greater, and the calibration drift limit shall be 5% of the established span value. NR 440.26(6)(a)3.d.d. Fuel gas combustion devices having a common source of fuel gas may be monitored at only one location, that is, after one of the combustion devices, if monitoring at this location accurately represents the SO2 emission into the atmosphere from each of the combustion devices. NR 440.26(6)(a)4.4. In place of the SO2 monitor in par. (a) 3., an instrument for continuously monitoring and recording the concentration (dry basis) of H2S in fuel gases before being burned in any fuel gas combustion device. NR 440.26(6)(a)4.b.b. Fuel gas combustion devices having a common source of fuel gas may be monitored at only one location, if monitoring at this location accurately represents the concentration of H2S in the fuel gas begin burned. NR 440.26(6)(a)5.5. For Claus sulfur recovery plants with oxidation control systems or reduction control systems followed by incineration subject to sub. (5) (a) 2. a., an instrument for continuously monitoring and recording the concentration (dry basis, zero percent excess air) of SO2 emissions into the atmosphere. The monitor shall include an oxygen monitor for correcting the data for excess air.