3) Method 3, 3A or 3B to determine the dry molecular weight of the stack gas.
4) Method 4 to determine the moisture content of the stack gas.
5) Method 18 to determine the VOHAP concentration. Alternatively, you may use Method 25 to determine the concentration of TGNMO using hexane as the calibration gas.
NR 463.25(3)(e)2.b.b. Using the CEMS required in s. NR 463.26 (1) (g), measure and record the concentration of total hydrocarbons, as hexane, during each of the Method 18 or Method 25 sampling runs. You shall measure emissions at the outlet of the control device, or at the outlet of the emissions source if no control device is present, prior to any releases to the atmosphere. NR 463.25(3)(e)2.c.c. Calculate the average VOHAP or TGNMO concentration for the source test as the arithmetic average of the concentrations measured for the individual test runs and determine the average concentration of total hydrocarbon, as hexane, as measured by the CEMS during all test runs. where:
CVOHAP,avg is the average concentration of VOHAP for the source test in ppmv as measured by Method 18 in 40 CFR part 60, Appendix A, incorporated by reference in s. NR 484.04 (16), or the average concentration of TGNMO for the source test in ppmv as hexane as measured by Method 25 in 40 CFR part 60, Appendix A, incorporated by reference in s. NR 484.04 (19) CCEM is the average concentration of total hydrocarbons in ppmv as hexane as measured using the CEMS during the source test
NR 463.25(3)(e)3.3. For 2 or more exhaust streams from one or more automated conveyor and pallet cooling lines or automated shakeout lines, compute the flow-weighted average concentration of VOHAP emissions for each combination of exhaust streams using Equation 3: where:
CW is the flow-weighted concentration of VOHAP or VOC, ppmv, as hexane
Ci is the concentration of VOHAP or VOC from exhaust stream i, ppmv, as hexane
n is the number of exhaust streams sampled
Qi is the volumetric flow rate of effluent gas from exhaust stream i in dscfm
NR 463.25(3)(f)(f) Triethylamine emissions. To determine compliance with the emissions limit or standard in s. NR 463.23 (1) (a) 11. for a TEA cold box mold or core making line, you shall use the following test methods and procedures: NR 463.25(3)(f)1.a.a. Method 1 or 1A to select sampling port locations and the number of traverse points in each stack or duct. If you elect to meet the 99% reduction standard, sampling sites shall be located both at the inlet to the control device and at the outlet of the control device prior to any releases to the atmosphere. If you elect to meet the concentration limit, the sampling site shall be located at the outlet of the control device, or at the outlet of the emissions source if no control device is present, prior to any releases to the atmosphere. NR 463.25(3)(f)1.b.b. Method 2, 2A, 2C, 2D, 2F or 2G to determine the volumetric flow rate of the stack gas. NR 463.25(3)(f)1.c.c. Method 3, 3A or 3B to determine the dry molecular weight of the stack gas. NR 463.25(3)(f)1.e.e. Method 18 to determine the TEA concentration. The Method 18 sampling time shall be sufficiently long such that either the TEA concentration in the field sample is at least 5 times the limit of detection for the analytical method or the test results calculated using the laboratory’s reported analytical detection limit for the specific field samples are less than 1/5 of the applicable emissions limit. The adsorbent tube approach, as described in Method 18, may be required to achieve the necessary analytical detection limits. The sampling time shall be at least one hour in all cases. NR 463.25(3)(f)2.2. Conduct the test as soon as practicable after adding fresh acid solution and the system has reached normal operating conditions. NR 463.25(3)(f)3.3. If you use a wet acid scrubber that is subject to the operating limit in s. NR 463.23 (1) (b) 5. b. for pH level, determine the pH of the scrubber blowdown using one of the following procedures: NR 463.25(3)(f)3.a.a. Measure the pH of the scrubber blowdown with the CPMS required in s. NR 463.26 (1) (f) 2. during each TEA sampling run in intervals of no more than 15 minutes. Determine and record the 3-hour average. NR 463.25(3)(f)3.b.b. Measure and record the pH level using the probe and meter required in s. NR 463.26 (1) (f) 2. once each sampling run. Determine and record the average pH level for the 3 runs. NR 463.25(3)(f)4.4. If you are subject to the 99% reduction standard, calculate the mass emissions reduction using Equation 4: