3) Only 2 calibration gases are required, a zero and span, and ambient air may be used as the span.
4) A calibration error check is not required.
5) The allowable sample bias, zero drift and calibration drift are ± 10%.
NR 440.75(4)(a)4.4. Operate the collection system so that the methane concentration is less than 500 parts per million above background at the surface of the landfill. To determine if this level is exceeded, the owner or operator shall conduct surface testing around the perimeter of the collection area and along a pattern that traverses the landfill at 30 meter intervals and where visual observations indicate elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover. The owner or operator may establish an alternative traversing pattern that ensures equivalent coverage. A surface monitoring design plan shall be developed that includes a topographical map with the monitoring route and the rationale for any site-specific deviations from the 30 meter intervals. Areas with steep slopes or other dangerous areas may be excluded from the surface testing. NR 440.75(4)(a)5.5. Operate the system such that all collected gases are vented to a control system designed and operated in compliance with sub. (3) (b) 2. c. In the event the collection or control system is inoperable, the gas mover system shall be shut down and all valves in the collection and control system contributing to venting of the gas to the atmosphere shall be closed within one hour. NR 440.75(4)(a)6.6. Operate the control or treatment system at all times when the collected gas is routed to the system. NR 440.75(4)(b)(b) If monitoring demonstrates that the operational requirements in par. (a) 2., 3. or 4. are not met, corrective action shall be taken as specified in sub. (6) (a) 3. to 5. or (c). If the specified corrective actions are taken, the monitored exceedance is not a violation of the operational requirements in this subsection. NR 440.75(5)(a)1.1. ‘Emission rate calculation.’ The landfill owner or operator shall calculate the NMOC emission rate using either of the equations provided in subd. 1. a. or b. as appropriate. Both equations may be used if the actual year-to-year solid waste acceptance rate is known for part of the life of the landfill and the actual year-to-year solid waste acceptance rate is unknown for part of the life of the landfill. The values used in both equations shall be 0.05 per year for k, 170 cubic meters per megagram for Lo and 4,000 parts per million by volume as hexane for CNMOC. For landfills located in geographical areas with a 30 year annual average precipitation of less than 25 inches, as measured at the nearest representative official meteorologic site, the k value used shall be 0.02 per year. NR 440.75(5)(a)1.a.a. The following equation shall be used if the actual year-to-year solid waste acceptance rate is known: where:
MNMOC is the total NMOC emission rate from the landfill in megagrams per year
k is the methane generation rate constant in year-1
Lo is the methane generation potential in cubic meters per megagram of solid waste
Mi is the mass of solid waste in the ith section in megagrams. The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value for Mi if documentation of the nature and amount of such wastes is maintained.
ti is the age of the ith section in years
CNMOC is the concentration of NMOC in parts per million by volume as hexane
3.6 x 10-9 is a conversion factor
NR 440.75(5)(a)1.b.b. The following equation shall be used if the actual year-to-year solid waste acceptance rate is unknown: where:
MNMOC is the mass emission rate of NMOC in megagrams per year
Lo is the methane generation potential in cubic meters per megagram of solid waste
R is the average annual acceptance rate in megagrams per year. The mass of nondegradable solid waste may be subtracted from the total mass of solid waste in a particular section of the landfill when calculating the value or R, if documentation of the nature and amount of such wastes is maintained.
k is the methane generation rate constant in year-1
t is the age of landfill in years
CNMOC is the concentration of NMOC in parts per million by volume as hexane