NR 465.28(7)(c)(c) If 2 or more add-on control devices are used for the same emission stream, you shall measure emissions at the outlet of each device. NR 465.28 NoteNote: For example, if one add-on control device is a concentrator with an outlet for the high-volume, dilute stream that has been treated by the concentrator, and a second add-on control device is an oxidizer with an outlet for the low-volume, concentrated stream that is treated with the oxidizer, you shall measure emissions at the outlet of the oxidizer and the high-volume dilute stream outlet of the concentrator.
NR 465.28(7)(d)(d) For each test run, determine the total gaseous organic emissions mass flow rates for the inlet and the outlet of the add-on control device, using Equation 8 in this paragraph. If there is more than one inlet or outlet to the add-on control device, you shall calculate the total gaseous organic mass flow rate using Equation 8 in this paragraph for each inlet and each outlet and then total all of the inlet emissions and total all of the outlet emissions. (Equation 8)
where:
Mf is the total gaseous organic emissions mass flow rate, kg/per hour (h)
Cc is the concentration of organic compounds as carbon in the vent gas, as determined by Method 25 or Method 25A, parts per million by volume (ppmv), dry basis
Qsd is the volumetric flow rate of gases entering or exiting the add-on control device, as determined by Method 2, 2A, 2C, 2D, 2F or 2G, dry standard cubic meters/hour (dscm/h)
0.0416 = conversion factor for molar volume, kg-moles per cubic meter (mol/m3) (at 293 Kelvin (K) and 760 millimeters of mercury (mm Hg))
NR 465.28(7)(e)(e) For each test run, determine the add-on control device organic emissions destruction or removal efficiency, using the following equation: (Equation 9)
where:
DRE is the add-on control device organic emissions destruction or removal efficiency, percent
Mfi is the total gaseous organic emissions mass flow rate at the inlet or inlets to the add-on control device, using Equation 8 in par. (d), kg/h
Mfo is the total gaseous organic emissions mass flow rate at the outlet or outlets of the add-on control device, using Equation 8 in par. (d), kg/h
NR 465.28(7)(f)(f) Determine the emission destruction or removal efficiency of the add-on control device as the average of the efficiencies determined in the 3 test runs and calculated in Equation 9 in par. (e). NR 465.28(8)(8) How do I establish the emission capture system and add-on control device operating limits during the performance test?. During the performance test required by sub. (1) and described in subs. (5) to (7), you shall establish the operating limits required by s. NR 465.23 (3) according to the following requirements, as applicable, unless you have received approval for alternative monitoring and operating limits under s. NR 460.07 (6) as specified in s. NR 465.23 (3): NR 465.28(8)(a)(a) Thermal oxidizers. If your add-on control device is a thermal oxidizer, according to both of the following: NR 465.28(8)(a)1.1. During the performance test, you shall monitor and record the combustion temperature at least once every 15 minutes during each of the 3 test runs. You shall monitor the temperature in the firebox of the thermal oxidizer or immediately downstream of the firebox before any substantial heat exchange occurs. NR 465.28(8)(a)2.2. Use the data collected during the performance test to calculate and record the average combustion temperature maintained during the performance test. This average combustion temperature is the minimum operating limit for your thermal oxidizer. NR 465.28(8)(b)1.1. If your add-on control device is a catalytic oxidizer, according to either of the following: NR 465.28(8)(b)1.a.a. During the performance test, monitor and record the temperature just before the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the 3 test runs. Use the data collected during the performance test to calculate and record the average temperature just before the catalyst bed and the average temperature difference across the catalyst bed maintained during the performance test. These are the minimum operating limits for your catalytic oxidizer. NR 465.28(8)(b)1.b.b. Monitor the temperature just before the catalyst bed and implement a site-specific inspection and maintenance plan for your catalytic oxidizer as specified in subd. 2. During the performance test, you shall monitor and record the temperature just before the catalyst bed at least once every 15 minutes during each of the 3 test runs. Use the data collected during the performance test to calculate and record the average temperature just before the catalyst bed during the performance test. This is the minimum operating limit for your catalytic oxidizer. NR 465.28(8)(b)2.2. You shall develop and implement an inspection and maintenance plan for any catalytic oxidizer or oxidizers for which you elect to monitor according to subd. 1. b. The plan shall address, at a minimum, the following elements: NR 465.28(8)(b)2.a.a. Annual sampling and analysis of the catalyst activity (i.e., conversion efficiency) following the manufacturer’s or catalyst supplier’s recommended procedures.