NR 440.684(8)(8)Recordkeeping and reporting requirements.
NR 440.684(8)(a)(a) Records of the calculations and measurements required in subs. (3) (a) and (b) and (7) (a) to (g) shall be retained for at least 2 years following the date of the measurements by owners and operators subject to this section. This requirement is included under s. NR 440.07 (5).
NR 440.684(8)(b)(b) Each owner or operator shall submit a written report of excess emissions to the department semiannually. For the purpose of these reports, excess emissions are defined as:
NR 440.684(8)(b)1.1. Any 24-hour period (at consistent intervals) during which the average sulfur emission reduction efficiency (R) is less than the minimum required efficiency (Z).
NR 440.684(8)(b)2.2. For any affected facility electing to comply with the provisions of sub. (7) (b) 2., any 24-hour period during which the average temperature of the gases leaving the combustion zone of an incinerator is less than the appropriate operating temperatures determined during the most recent performance test in accordance with the provisions of sub. (7) (b) 2. Each 24-hour period shall consist of at least 96 temperature measurements equally spaced over the 24 hours.
NR 440.684(8)(c)(c) To certify that a facility is exempt from the control requirements of these standards, each owner or operator of a facility with a design capacity less than 2 LT/D of H2S in the acid gas (expressed as sulfur) shall keep, for the life of the facility, an analysis demonstrating that the facility’s design capacity is less than 2 LT/D of H2S expressed as sulfur.
NR 440.684(8)(d)(d) Each owner or operator who elects to comply with sub. (7) (e) shall keep, for the life of the facility, a record demonstrating that the facility’s design capacity is less than 150 LT/D of H2S expressed as sulfur.
NR 440.684(9)(9)Optional procedure for measuring hydrogen sulfide in acid gas-tutwiler procedure.
NR 440.684(9)(a)(a) General. The Tutwiler procedure may be used to measure hydrogen sulfide in acid gas in accordance with the Gas Engineer’s Handbook, first edition, second printing, Fuel Gas Engineering Practices, page 6/25, incorporated by reference in s. NR 440.17. When an instantaneous sample is desired and H2S concentration is 10 grains per 1000 cubic foot or more, a 100 ml Tutwiler burette is used. For concentrations less than 10 grains, a 500 ml Tutwiler burette and more dilute solutions are used. In principle this method consists of titrating hydrogen sulfide in a gas sample directly with a standard solution of iodine.
NR 440.684(9)(b)(b) Apparatus. (See Figure 1.) A 100 or 500 ml capacity Tutwiler burette with 2-way glass stopcock at the bottom and 3-way stopcock at the top is connected either with inlet tubulature or a glass-stoppered cylinder, 10 ml capacity, graduated in 0.1 ml subdivisions, with rubber tubing connecting the burette with a leveling bottle.
NR 440.684(9)(c)(c) Reagents.
NR 440.684(9)(c)1.1. Iodine stock solution, 0.1N. Weigh out 12.7 g of iodine and 20 to 25 g cp potassium iodide for each liter of solution. Dissolve the KI in as little water as necessary and then dissolve the iodine in the concentrated KI solution, make up to proper volume, and store in a glass-stoppered brown glass bottle.
NR 440.684(9)(c)2.2. Standard iodine solution, 1 ml ± 0.001771 g I. Transfer 33.7 ml of the 0.1N stock solution into a 250 ml volumetric flask, add water to the mark and mix well. Then, for a 100 ml sample of gas, 1 ml of standard iodine solution is equivalent to 100 grains of H2S per cubic foot of gas.
Starch solution. Rub into a thin paste about one teaspoonful of wheat starch with a little water, pour it into about a pint of boiling water and stir. After it has cooled, decant off the clear solution. Make fresh solution every few days.
NR 440.684(9)(d)(d) Procedure. Fill the leveling bulb with starch solution. Raise (L), open cock (G), open (F) to (A), and close (F) when the solution starts to run out of the gas inlet. Close (G). Purge the gas sampling line and connect it with (A). Lower (L) and open (F) and (G). When the liquid level is several ml past the 100 ml mark, close (G) and (F), and disconnect the sampling tube. Open (G) and bring the starch solution to the 100 ml mark by raising (L), then close (G). Open (F) momentarily, to bring the gas in the burette to atmospheric pressure, and close (F). Open (G) and bring the liquid level down to the 10 ml mark by lowering (L). Close (G), clamp the rubber tubing near (E) and disconnect it from the burette. Rinse the graduated cylinder with a standard iodine solution (0.00171 g I per ml), fill the cylinder and record the reading. Introduce successive small amounts of iodine thru (F), shaking well after each addition, and continue until a faint permanent blue color is obtained. Record the reading, subtract it from the previous reading and call the difference D.
NR 440.684(9)(e)(e) Reagent test. With every fresh stock of starch solution, perform a blank test as follows: introduce fresh starch solution into the burette up to the 100 ml mark. Close (F) and (G). Lower (L) and open (G). When the liquid level reaches the 10 ml mark, close (G). With air in the burette titrate as during a test and up to the same end point. Call the ml of iodine used C. Then,
NR 440.684(9)(f)(f) Sensitivity enhancement. Greater sensitivity can be attained if a 500 ml capacity Tutwiler burette is used with a more dilute (0.001N) iodine solution. Concentrations less than 1.0 grains per 100 cubic foot can be determined in this way. Usually
the starch-iodine end point is much less distinct and a blank determination of end point, with H2S-free gas or air, is required.
Figure 1. Tutwiler burette (lettered items mentioned in text).
NR 440.684 HistoryHistory: Cr. Register, September, 1990, No. 417, eff. 10-1-90; am. (2) (a) 4., (4) (b), (7) (a) 2. and 4., (b) 3., (c), (d) (intro.), (e) and (8) (a), renum. (2) (b) 4. to 6. to be (2) (b) 5. to 7., cr. (2) (b) 4., r. and recr. (5), r. (6), Register, July, 1993, No. 451, eff. 8-1-93; am. (5) (c) 3., Register, December, 1995, No. 480, eff. 1-1-96; CR 06-109: am. (2) (a) 8. and (b) 1. to 3., (4) (b), (5) (b) 1. to 3., (c) 2. and 4. and (7) (b) 1. and (c), r. (2) (b) 4., renum. (2) (b) 5. to 7. to be (2) (b) 4. to 5. and am., r. and recr. (5) (c) 3. and (7) (e) Register May 2008 No. 629, eff. 6-1-08.
NR 440.686NR 440.686Volatile organic compound (VOC) emissions from synthetic organic chemical manufacturing industry (SOCMI) distillation operations.
NR 440.686(1)(1)Applicability and designation of affected facility.
NR 440.686(1)(a)(a) The provisions of this section apply to each affected facility designated in par. (b) that is part of a process unit that produces any of the chemicals listed in sub. (8) as a product, co-product, by-product or intermediate, except as provided in par. (c).
NR 440.686(1)(b)(b) The affected facility is any of the following for which construction, modification or reconstruction commenced after December 30, 1983:
NR 440.686(1)(b)1.1. Each distillation unit not discharging its vent stream into a recovery system.
NR 440.686(1)(b)2.2. Each combination of a distillation unit and the common recovery system into which its vent stream is discharged.
NR 440.686(1)(b)3.3. Each combination of 2 or more distillation units and the common recovery system into which their vent streams are discharged.
NR 440.686(1)(c)(c) Exemptions from the provisions of par. (a) are as follows: