NR 665.1035(1)(a)(a) Each owner or operator subject to this subchapter shall comply with this section. NR 665.1035(1)(b)(b) An owner or operator of more than one hazardous waste management unit subject to this subchapter may comply with the recordkeeping requirements for these hazardous waste management units in one recordkeeping system if the system identifies each record by each hazardous waste management unit. NR 665.1035(2)(2) Record all of the following information in the facility operating record: NR 665.1035(2)(a)(a) For facilities that comply with s. NR 665.1033 (1) (b), an implementation schedule that includes dates by which the closed-vent system and control device will be installed and in operation. The schedule shall also include a rationale of why the installation cannot be completed at an earlier date. The implementation schedule shall be in the facility operating record by the effective date that the facility becomes subject to this subchapter. NR 665.1035(2)(b)(b) Up-to-date documentation of compliance with the process vent standards in s. NR 665.1032, including all of the following: NR 665.1035(2)(b)1.1. Information and data identifying all affected process vents, annual throughput end operating hours of each affected unit, estimated emission rates for each affected vent and for the overall facility (i.e., the total emissions for all affected vents at the facility) and the approximate location within the facility of each affected unit (e.g., identify the hazardous waste management units on a facility plot plan). NR 665.1035(2)(b)2.2. Information and data supporting determinations of vent emissions and emission reductions achieved by add-on control devices based on engineering calculations or source tests. For the purpose of determining compliance, make determinations of vent emissions and emission reductions using operating parameter values (e.g., temperatures, flow rates or vent stream organic compounds and concentrations) that represent the conditions that result in maximum organic emissions, such as when the waste management unit is operating at the highest load or capacity level reasonably expected to occur. If the owner or operator takes any action (e.g., managing a waste of different composition or increasing operating hours of affected waste management units) that would result in an increase in total organic emissions from affected process vents at the facility, a new determination is required. NR 665.1035(2)(c)(c) Where an owner or operator chooses to use test data to determine the organic removal efficiency or total organic compound concentration achieved by the control device, a performance test plan. The test plan shall include all of the following: NR 665.1035(2)(c)1.1. A description of how it is determined that the planned test is going to be conducted when the hazardous waste management unit is operating at the highest load or capacity level reasonably expected to occur. This shall include the estimated or design flow rate and organic content of each vent stream and define the acceptable operating ranges of key process and control device parameters during the test program. NR 665.1035(2)(c)2.2. A detailed engineering description of the closed-vent system and control device including all of the following: NR 665.1035(2)(c)3.3. A detailed description of sampling and monitoring procedures, including sampling and monitoring locations in the system, the equipment to be used, sampling and monitoring frequency and planned analytical procedures for sample analysis. NR 665.1035(2)(d)1.1. A list of all information references and sources used in preparing the documentation. NR 665.1035(2)(d)3.3. If engineering calculations are used, a design analysis, specifications, drawings, schematics and piping and instrumentation diagrams based on the appropriate sections of “APTI Course 415: Control of Gaseous Emissions”, incorporated by reference in s. NR 660.11, or other engineering texts acceptable to the department that present basic control device design information. Documentation provided by the control device manufacturer or vendor that describes the control device design according to subd. 3. a. to g. may be used to comply with this requirement. The design analysis shall address the vent stream characteristics and control device operation parameters as follows: NR 665.1035(2)(d)3.a.a. For a thermal vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations and flow rate. The design analysis shall also establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. NR 665.1035(2)(d)3.b.b. For a catalytic vapor incinerator, the design analysis shall consider the vent stream composition, constituent concentrations and flow rate. The design analysis shall also establish the design minimum and average temperatures across the catalyst bed inlet and outlet. NR 665.1035(2)(d)3.c.c. For a boiler or process heater, the design analysis shall consider the vent stream composition, constituent concentrations and flow rate. The design analysis shall also establish the design minimum and average flame zone temperatures, combustion zone residence time and description of method and location where the vent stream is introduced into the combustion zone. NR 665.1035(2)(d)3.d.d. For a flare, the design analysis shall consider the vent stream composition, constituent concentrations and flow rate. The design analysis shall also consider the requirements in s. NR 665.1033 (4). NR 665.1035(2)(d)3.e.e. For a condenser, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity and temperature. The design analysis shall also establish the design outlet organic compound concentration level, design average temperature of the condenser exhaust vent stream and design average temperatures of the coolant fluid at the condenser inlet and outlet. NR 665.1035(2)(d)3.f.f. For a carbon adsorption system such as a fixed-bed adsorber that regenerates the carbon bed directly onsite in the control device, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity and temperature. The design analysis shall also establish the design exhaust vent stream organic compound concentration level, number and capacity of carbon beds, type and working capacity of activated carbon used for carbon beds, design total steam flow over the period of each complete carbon bed regeneration cycle, duration of the carbon bed steaming and cooling or drying cycles, design carbon bed temperature after regeneration, design carbon bed regeneration time and design service life of carbon. NR 665.1035(2)(d)3.g.g. For a carbon adsorption system such as a carbon canister that does not regenerate the carbon bed directly onsite in the control device, the design analysis shall consider the vent stream composition, constituent concentrations, flow rate, relative humidity and temperature. The design analysis shall also establish the design outlet organic concentration level, capacity of carbon bed, type and working capacity of activated carbon used for carbon bed and design carbon replacement interval based on the total carbon working capacity of the control device and source operating schedule. NR 665.1035(2)(d)4.4. A statement signed and dated by the owner or operator certifying that the operating parameters used in the design analysis reasonably represent the conditions that exist when the hazardous waste management unit is or would be operating at the highest load or capacity level reasonably expected to occur. NR 665.1035(2)(d)5.5. A statement signed and dated by the owner or operator certifying that the control device is designed to operate at an efficiency of 95 percent or greater, unless the total organic concentration limit of s. NR 665.1032 (1) is achieved at an efficiency less than 95 weight percent or the total organic emission limits of s. NR 665.1032 (1) for affected process vents at the facility can be attained by a control device involving vapor recovery at an efficiency less than 95 weight percent. A statement provided by the control device manufacturer or vendor certifying that the control equipment meets the design specifications may be used to comply with this requirement.