NR 665.1033(6)(b)1.1. For a thermal vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of ±1 percent of the temperature being monitored in °C or ±0.5 °C, whichever is greater. Install the temperature sensor at a location in the combustion chamber downstream of the combustion zone. NR 665.1033(6)(b)2.2. For a catalytic vapor incinerator, a temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature at 2 locations and have an accuracy of ±1 percent of the temperature being monitored in °C or ±0.5 °C, whichever is greater. Install one temperature sensor in the vent stream at the nearest feasible point to the catalyst bed inlet and install a second temperature sensor in the vent stream at the nearest feasible point to the catalyst bed outlet. NR 665.1033(6)(b)3.3. For a flare, a heat sensing monitoring device equipped with a continuous recorder that indicates the continuous ignition of the pilot flame. NR 665.1033(6)(b)4.4. For a boiler or process heater having a design heat input capacity less than 44 MW, a temperature monitoring device equipped with a continuous recorder. The device shall have an accuracy of ±1 percent of the temperature being monitored in °C or ±0.5 °C, whichever is greater. Install the temperature sensor at a location in the furnace downstream of the combustion zone. NR 665.1033(6)(b)5.5. For a boiler or process heater having a design heat input capacity greater than or equal to 44 MW, a monitoring device equipped with a continuous recorder to measure a parameter or parameters that indicates good combustion operating practices are being used. NR 665.1033(6)(b)6.a.a. A monitoring device equipped with a continuous recorder to measure the concentration level of the organic compounds in the exhaust vent stream from the condenser. NR 665.1033(6)(b)6.b.b. A temperature monitoring device equipped with a continuous recorder. The device shall be capable of monitoring temperature with an accuracy of ±1 percent of the temperature being monitored in °C or ±0.5 °C, whichever is greater. Install the temperature sensor at a location in the exhaust vent stream from the condenser exit (i.e., product side). NR 665.1033(6)(b)7.7. For a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly in the control device, any of the following: NR 665.1033(6)(b)7.a.a. A monitoring device equipped with a continuous recorder to measure the concentration level of the organic compounds in the exhaust vent stream from the carbon bed. NR 665.1033(6)(b)7.b.b. A monitoring device equipped with a continuous recorder to measure a parameter that indicates the carbon bed is regenerated on a regular, predetermined time cycle. NR 665.1033(6)(c)(c) Inspect the readings from each monitoring device required by pars. (a) and (b) at least once each operating day to check control device operation and, if necessary, immediately implement the corrective measures necessary to ensure the control device operates in compliance with this section. NR 665.1033(7)(7) An owner or operator using a carbon adsorption system such as a fixed-bed carbon adsorber that regenerates the carbon bed directly onsite in the control device, shall replace the existing carbon in the control device with fresh carbon at a regular, predetermined time interval that is no longer than the carbon service life established as a requirement of s. NR 665.1035 (2) (d) 3. f. NR 665.1033(8)(8) An owner or operator using a carbon adsorption system such as a carbon canister that does not regenerate the carbon bed directly onsite in the control device shall replace the existing carbon in the control device with fresh carbon on a regular basis using one of the following procedures: NR 665.1033(8)(a)(a) Monitor the concentration level of the organic compounds in the exhaust vent stream from the carbon adsorption system on a regular schedule and replace the existing carbon with fresh carbon immediately when carbon breakthrough is indicated. The monitoring frequency shall be daily or at an interval no greater than 20 percent of the time required to consume the total carbon working capacity established as a requirement of s. NR 665.1035 (2) (d) 3. g., whichever is longer. NR 665.1033(8)(b)(b) Replace the existing carbon with fresh carbon at a regular, predetermined time interval that is less than the design carbon replacement interval established as a requirement of s. NR 665.1035 (2) (d) 3. g. NR 665.1033(9)(9) An owner or operator of an affected facility seeking to comply with this chapter by using a control device other than a thermal vapor incinerator, catalytic vapor incinerator, flare, boiler, process heater, condenser or carbon adsorption system shall develop documentation including sufficient information to describe the control device operation and identify the process parameter or parameters that indicate proper operation and maintenance of the control device. NR 665.1033(10)(10) A closed-vent system shall meet any of the following design requirements: NR 665.1033(10)(a)(a) Design a closed-vent system to operate with no detectable emissions, as indicated by an instrument reading of less than 500 ppmv above background determined by the procedure in s. NR 665.1034 (2), and by visual inspections. NR 665.1033(10)(b)(b) Design a closed-vent system to operate at a pressure below atmospheric pressure. Equip the system with at least one pressure gauge or other pressure measurement device that can be read from a readily accessible location to verify that negative pressure is being maintained in the closed-vent system when the control device is operating. NR 665.1033(11)(11) The owner or operator shall monitor and inspect each closed-vent system required to comply with this section to ensure proper operation and maintenance of the closed-vent system by implementing all of the following requirements: NR 665.1033(11)(a)(a) Inspect and monitor each closed-vent system that is used to comply with sub. (10) (a) according to all of the following requirements: NR 665.1033(11)(a)1.1. Conduct an initial leak detection monitoring of the closed-vent system on or before the date that the system becomes subject to this section. Monitor the closed-vent system components and connections using the procedures in s. NR 665.1034 (2) to demonstrate that the closed-vent system operates with no detectable emissions, as indicated by an instrument reading of less than 500 ppmv above background. NR 665.1033(11)(a)2.2. After initial leak detection monitoring required in subd. 1., inspect and monitor the closed-vent system as follows: NR 665.1033(11)(a)2.a.a. Visually inspect closed-vent system joints, seams or other connections that are permanently or semi-permanently sealed (e.g., a welded joint between 2 sections of hard piping or a bolted and gasketed ducting flange) at least once per year to check for defects that could result in air pollutant emissions. Monitor a component or connection using the procedures in s. NR 665.1034 (2) to demonstrate that it operates with no detectable emissions following any time the component is repaired or replaced (e.g., a section of damaged hard piping is replaced with new hard piping) or the connection is unsealed (e.g., a flange is unbolted). NR 665.1033(11)(a)2.b.b. Monitor closed-vent system components or connections other than those specified in subd. 2. a. annually and at other times requested by the department, except as provided for in sub. (14), using the procedures in s. NR 665.1034 (2) to demonstrate that the components or connections operate with no detectable emissions. NR 665.1033(11)(a)3.3. In the event that a defect or leak is detected, repair the defect or leak according to par. (c). NR 665.1033(11)(b)(b) Inspect and monitor each closed-vent system that is used to comply with sub. (10) (b) according to all of the following requirements: