DEPARTMENT OF NATURAL RESOURCES

Chapter NR 279

PETROLEUM REFINING

NR 279.01	Purpose.		reduction attainable by the application of the best available tech-
NR 279.02	Applicability.		nology economically achievable (BAT).
NR 279.03	General definitions.	NR 279.34	Effluent limitations guidelines representing the degree of effluent
NR 279.10	Applicability; description of the topping subcategory.		reduction attainable by the application of the best conventional
NR 279.12	Effluent limitations guidelines representing the degree of effluent		pollutant control technology (BCT).
	reduction attainable by the application of the best practicable con-	NR 279.35	Pretreatment standards for existing sources (PSES).
	trol technology currently available (BPT).	NR 279.36	Standards of performance for new sources (NSPS).
NR 279.13	Effluent limitations guidelines representing the degree of effluent	NR 279.37	Pretreatment standards for new sources (PSNS).
	reduction attainable by the application of the best available tech-	NR 279.40	Applicability; description of the lube subcategory.
	nology economically achievable (BAT).	NR 279.42	Effluent limitations guidelines representing the degree of effluent
NR 279.14	Effluent limitations guidelines representing the degree of effluent		reduction attainable by the application of the best practicable con-
	reduction attainable by the application of the best conventional		trol technology currently available (BPT).
	pollutant control technology (BCT).	NR 279.43	Effluent limitations guidelines representing the degree of effluent
NR 279.15	Pretreatment standards for existing sources (PSES).		reduction attainable by the application of the best available tech-
NR 279.16	Standards of performance for new sources (NSPS).		nology economically achievable (BAT).
NR 279.17	Pretreatment standards for new sources (PSNS).	NR 279.44	Effluent limitations guidelines representing the degree of effluent
NR 279.20	Applicability; description of the cracking subcategory.		reduction attainable by the application of the best conventional
NR 279.22	Effluent limitations guidelines representing the degree of effluent		pollutant control technology (BCT).
	reduction attainable by the application of the best practicable con-	NR 279.45	Pretreatment standards for existing sources (PSES).
	trol technology currently available (BPT).	NR 279.46	Standards of performance for new sources (NSPS).
NR 279.23	Effluent limitations guidelines representing the degree of effluent	NR 279.47	Pretreatment standards for new sources (PSNS).
	reduction attainable by the application of the best available tech-	NR 279.50	Applicability; description of the integrated subcategory.
	nology economically achievable (BAT).	NR 279.52	Effluent limitations guidelines representing the degree of effluent
NR 279.24	Effluent limitations guidelines representing the degree of effluent		reduction attainable by the application of the best practicable con-
	reduction attainable by the application of the best conventional		trol technology currently available (BPT).
	pollutant control technology (BCT).	NR 279.53	Effluent limitations guidelines representing the degree of effluent
NR 279.25	Pretreatment standards for existing sources (PSES).		reduction attainable by the application of the best available tech-
NR 279.26	Standards of performance for new sources (NSPS).		nology economically achievable (BAT).
NR 279.27	Pretreatment standards for new sources (PSNS).	NR 279.54	Effluent limitations guidelines representing the degree of effluent
NR 279.30	Applicability; description of the petrochemical subcategory.		reduction attainable by the application of the best conventional
NR 279.31	Specialized definitions.		pollutant control technology (BCT).
NR 279.32	Effluent limitations guidelines representing the degree of effluent	NR 279.55	Pretreatment standards for existing sources (PSES).
	reduction attainable by the application of the best practicable con-	NR 279.56	Standards of performance for new sources (NSPS).
	trol technology currently available (BPT).	NR 279.57	Pretreatment standards for new sources (PSNS).
NR 279.33	Effluent limitations guidelines representing the degree of effluent	NR 279.60	Cross-reference.

Note: Chapter NR 279 as it existed on October 31, 1986 was repealed and a new chapter NR 279 was created effective November 1, 1986.

NR 279.01 Purpose. The purpose of this chapter is to establish effluent limitations, standards of performance, and pretreatment standards for discharges of wastes from the petroleum refining category of point sources and subcategories thereof.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.02 Applicability. The effluent limitations, standards of performance, pretreatment standards, and other provisions in this chapter are applicable to pollutants or pollutant properties in discharges resulting from operations of petroleum refining facilities in any of the following process or operation subcategories:

- (1) Topping process;
- (2) Cracking process;
- (3) Petrochemical operation;
- (4) Lube process; and
- **(5)** Integrated process.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.03 General definitions. For the purpose of this chapter:

- (1) Except as provided below, the general definitions, abbreviations, and methods of analysis set forth in 40 CFR Part 401 shall apply to this chapter.
 - (2) "Ballast" means the flow of waters, from a ship, that is

treated along with refinery wastewaters in the main treatment system.

- (3) "Contaminated runoff" means runoff which comes into contact with any raw material, intermediate product, finished product, by-product or waste product located on petroleum refinery property.
- (4) "Existing source" means any source that is not a new source.
- **(5)** "Feedstock" means the crude oil and natural gas liquids fed to the topping units.
- **(6)** "New source," as defined for PSES and PSNS, means any building, structure, facility, or installation from which there is or may be a discharge of pollutants, the construction of which commenced after December 21, 1979.
- (7) "New source," as defined for BPT, BAT, BCT, and NSPS, means any point source the construction of which commenced after December 1, 1982.
- **(8)** "Once-through cooling water" means those waters discharged that are used for the purpose of heat removal and that do not come into direct contact with any raw material, intermediate, or finished product.
- **(9)** "Runoff" means the flow of storm water resulting from precipitation coming into contact with petroleum refinery property.
 - (10) The following abbreviation shall be used:

"Mgal" means 1000 gallons.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

NR 279.10 Applicability; description of the topping subcategory. The provisions of this subcategory apply to discharges from any facility that produces petroleum products by the use of topping and catalytic reforming, whether or not the facility includes any other process in addition to topping and catalytic reforming. The provisions of this subcategory do not apply to facilities that include thermal processes (coking, vis-breaking, etc.) or catalytic cracking.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.12 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). (1) Except as provided in 40 CFR 125.30-125.32 any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT):

	BPT Effluent Limitations		
Pollutant or pollutant	Maximum for any 1	Average of daily values	
property	day	for 30 consecutive days	
	Metric units (l	kilograms per 1,000 m ³ of	
		feedstock)	
BOD ₅	22.7	12.0	
TSS	15.8	10.1	
COD^1	117.0	60.3	
Oil and grease	6.9	3.7	
Phenolic compounds	0.168	0.076	
Ammonia as N	2.81	1.27	
Sulfide	0.149	0.068	
Total chromium	0.345	0.2	
Hexavalent chromium	0.028	0.012	
pH	(2)	(2)	

	English units (pounds per 1,000 bbl of feedstock)	
BOD_5	8.0	4.25
TSS	5.6	3.6
COD^1	41.2	21.3
Oil and grease	2.5	1.3
Phenolic compounds	0.06	0.027
Ammonia as N	0.99	0.45
Sulfide	0.053	0.024
Total chromium	0.122	0.071
Hexavalent chromium	0.01	0.0044
pH	(2)	(2)

¹ See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 24.9	1.02	
25.0 to 49.9	1.06	
50.0 to 74.9	1.16	
75.0 to 99.9	1.26	
100 to 124.9	1.38	
125.0 to 149.9	1.5	
150.0 or greater	1.57	

(b) Process factor.

Process configuration	Process factor
Less than 2.49	0.62
2.5 to 3.49	0.67
3.5 to 4.49	0.8
4.5 to 5.49	0.95
5.5 to 5.99	1.07
6.0 to 6.49	1.17
6.5 to 6.99	1.27
7.0 to 7.49	1.39
7.5 to 7.99	1.51
8.0 to 8.49	1.64
8.5 to 8.99	1.79
9.0 to 9.49	1.95
9.5 to 9.99	2.12
10.0 to 10.49	2.31
10.5 to 10.99	2.51
11.0 to 11.49	2.73
11.5 to 11.99	2.98
12.0 to 12.49	3.24
12.5 to 12.99	3.53
13.0 to 13.49	3.84
13.5 to 13.99	4.18
14.0 or greater	4.36

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) The following allocations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to ballast, which may be discharged after the application of best practicable control technology currently available, by a point source subject to this subcategory, in addition to the discharge allowed by sub. (2). The allocation allowed for ballast water flow, as kg/cu m (lb/M gal), shall be based on those ballast waters treated at the refinery.

BPT Effluent Limitations for Ballast Water Pollutant or pollutant Maximum for any Average of daily values for 30 consecutive days property Metric units (kilograms per cubic meter of flow) BOD₅ 0.033 0.021 TSS COD^1 0.47 0.24 Oil and grease 0.015 0.008 pΗ (2) (2)

	English units (pounds per 1,000 gal of flow)	
BOD_5	0.4	0.21
TSS	0.26	0.17
COD^1	3.9	2.0
Oil and grease	0.126	0.067
pH	(2)	(2)

¹ See footnote following table in s. NR 279.13 (4).

(4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

- (5) Effluent limitations for contaminated runoff. The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best practicable control technology currently available by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease and 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contam-

² Within the range of 6.0 to 9.0.

² Within the range of 6.0 to 9.0.

inated runoff which exceeds 15 mg/l oil and grease or 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BPT Efflue	nt Limitations
Pollutant or pollutant property	Maximum for any 1 day	Average of daily val- ues for 30 consecutive days
	Metric units (kilogra	ms per 1,000 cubic me-
	ters o	of flow)
BOD_5	48.0	26.0
TSS	33.0	21.0
COD^1	360.0	180.0
Oil and grease	15.0	8.0
Phenolic compounds (4AAP)	0.35	0.17
Total chromium	0.73	0.43
Hexavalent chromium	0.062	0.028
pH	(2)	(2)

	English units (pounds per 1,000 gal of flow)		
BOD ₅	0.4	0.22	
TSS	0.28	0.18	
COD^1	3.0	1.5	
Oil and grease	0.13	0.067	
Phenolic compounds (4AAP)	0.0029	0.0014	
Total chromium	0.006	0.0035	
Hexavalent chromium	0.00052	0.00023	
pH	(2)	(2)	
¹ In any case in which the applicant can demonstrate that the chloride ion concern			

¹ In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1,000 mg/l (1,000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD.²

² Within the range 6.0 to 9.0.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.13 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) Except as provided in 40 CFR 125.30-125.32 any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT):

BAT Effluent Limitations Pollutant or pollutant Maximum for any 1 day Average of daily values for 30 consecutive days property Metric units (kilograms per 1,000 m³ of feedstock) COD1 117 60.3 1.27 Ammonia as N 2.81 Sulfide 0.149 0.068 English units (pounds per 1,000 bbl of feedstock) COD1 21.3 Ammonia as N 0.45 0.053 0.024 Sulfide

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 24.9	1.02	
25.0 to 49.9	1.06	
50.0 to 74.9	1.16	
75.0 to 99.9	1.26	
100.0 to 124.9	1.38	
125.0 to 149.9	1.5	
150.0 or greater	1.57	

(b) Process factor.

Process configuration	Process factor
Less than 2.49	0.62
2.5 to 3.49	0.67
3.5 to 4.49	0.8
4.5 to 5.49	0.95
5.5 to 5.99	1.07
6.0 to 6.49	1.17
6.5 to 6.99	1.27
7.0 to 7.49	1.39
7.5 to 7.99	1.51
8.0 to 8.49	1.64
8.5 to 8.99	1.79
9.0 to 9.49	1.95
9.5 to 9.99	2.12
10.0 to 10.49	2.31
10.5 to 10.99	2.51
11.0 to 11.49	2.73
11.5 to 11.99	2.98
12.0 to 12.49	3.24
12.5 to 12.99	3.53
13.0 to 13.49	3.84
13.5 to 13.99	4.18
14.0 or greater	4.36

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) (a) In addition to the provisions contained in sub. (1) pertaining to COD, ammonia and sulfide any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). For each of the regulated pollutant parameters listed below, the effluent limitation for a given refinery is the sum of the products of each effluent limitation factor times the applicable process feedstock rate, calculated as provided in 40 CFR 122.45 (b).

Note: Applicable production processes are presented in Appendix A, by process type. The process identification numbers presented in this Appendix A are for the convenience of the reader. They can be cross-referenced in the Development Document for Effluent Limitations Guidelines, New Source Performance Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category (EPA 440/1-82/014), Table III-7, pp. 49-54.

40 CFR 122.45 (b) reads as follows: The calculation of any permit limitations, standards, or prohibitions which are based on production (or other measure of operation) shall be based not upon the designed production capacity but rather upon a reasonable measure of actual production of the facility, such as the production during the high month of the previous year, or the monthly average for the highest of the previous 5 years. For new sources or new dischargers, actual production shall be estimated using projected production. The time period of the measure of production shall correspond to the time period of the calculated permit limitations; for example, monthly production shall be used to calculate average monthly discharge limitations

¹See footnote following table in s. NR 279.13 (4).

	BAT Effluen	t Limitations Factor
Pollutant or pollutant prop-	Maximum for any 1	Average of daily
erty and process type	day	values for 30 con-
		secutive days
		rams per 1,000 m³ of
	feeds	stock)
Phenolic compounds (4AAP):		
Crude	0.037	0.009
Cracking and coking	0.419	0.102
Asphalt	0.226	0.055
Lube	1.055	0.257
Reforming and alkylation	0.377	0.092
Total chromium:		
Crude	0.03	0.011
Cracking and coking	0.34	0.118
Asphalt	0.183	0.064
Lube	0.855	0.297
Reforming and alkylation	0.305	0.106
Hexavalent chromium:		
Crude	0.0019	0.0009
Cracking and coking	0.0218	0.0098
Asphalt	0.0117	0.0053
Lube	0.0549	0.0248
Reforming and alkylation	0.0196	0.0088
		nds per 1,000 bbl of
	feeds	stock
Phenolic compounds (4AAP):		
Crude	0.013	0.003
Cracking and coking	0.147	0.036
Asphalt	0.079	0.019
Lube	0.369	0.09
Reforming and alkylation	0.132	0.032
Total chromium:		
Crude	0.011	0.004
Cracking and coking	0.119	0.041
Asphalt	0.064	0.022
Lube	0.299	0.104
Reforming and alkylation	0.107	0.037
Hexavalent chromium:		
Crude	0.0007	0.0003
Cracking and coking	0.0076	0.0034
Asphalt	0.0041	0.0019
Lube	0.0192	0.0087
Reforming and alkylation	0.0089	0.0031

Note: See the comprehensive example in s. NR 279.43 (3) (b).

(4) The following allocations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to ballast, which may be discharged after the application of best available technology economically achievable by a point source subject to the provisions of this subcategory. These allocations are in addition to the discharge allowed by sub. **(2)**. The allocation allowed for ballast water flow, as kg/cu m (lb/M gal), shall be based on those ballast waters treated at the refinery.

	BAT Effluent Limitat	BAT Effluent Limitations For Ballast Water		
Pollutant or pollutant	Maximum for any 1	Average of daily val-		
property	day	ues for 30 consecutive		
		days		
•	Metric units (kilogra	Metric units (kilograms per cubic meter of		
	fle	flow)		
COD^1	0.47	0.24		
	English units (pounds	English units (pounds per 1,000 gal. of flow)		
COD ¹	3.9	2.0		

¹In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1,000 mg/l (1,000 ppm), the Regional Administrator of the EPA may substitute TOC as a parameter in lieu of COD. Effluent limitations for TOC shall be based on effluent data from the plant correlating TOC to BOD₅. If in the judgment of the regional administrator, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations on BOD₅.

(5) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

- **(6)** The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best available technology economically achievable by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BAT effluent limitations			
Pollutant or pollutant property	Maximum for any 1 day	Average of daily val- ues for 30 con- secutive days		
	Metric units (kilogrameters of flow)	ns per 1,000 cubic me-		
Phenolic compounds (4AAP)	0.35	0.17		
Total chromium	0.6	0.21		
Hexavalent chromium	0.062	0.028		
COD^1	360.0	180.0		
	English units (pounds per 1,000 gal-			
	lons of flow)			
Phenolic compounds (4AAP)	.0029	.0014		
Total chromium	.005	.0018		
Hexavalent chromium	.00052	.00023		
COD ¹	3.0	1.5		

¹In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1000 mg/l (1000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD₅.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.14 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). (1) Any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT):

	BCT Eff	BCT Effluent Limitations		
Pollutant or poll property	utant Maximum for any day	1 Average of daily values for 30 consecutive days		
	Metric units (kilogra	ams per 1,000 m ³ of feedstock)		
BOD_5	22.7	12.0		
TSS	15.8	10.1		
Oil and grease	6.9	3.7		
pH	(1)	(1)		

	English units (pounds	English units (pounds per 1,000 bbl of feedstock)		
BOD_5	8.0	4.25		
TSS	5.6	3.6		
Oil and grease	2.5	1.3		
pН	(1)	(1)		

Within the range 6.0 to 9.0.

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 24.9	1.02	
25.0 to 49.9	1.06	
50.0 to 74.9	1.16	
75.0 to 99.9	1.26	
100.0 to 124.9	1.38	
125.0 to 149.9	1.5	
150.0 or greater	1.57	

(b) Process factor.

Process configuration	Process factor
Less than 2.49	0.62
2.5 to 3.49	0.67
3.5 to 4.49	0.8
4.5 to 5.49	0.95
5.5 to 5.99	1.07
6.0 to 6.49	1.17
6.5 to 6.99	1.27
7.0 to 7.49	1.39
7.5 to 7.99	1.51
8.0 to 8.49	1.64
8.5 to 8.99	1.79
9.0 to 9.49	1.95
9.5 to 9.99	2.12
10.0 to 10.49	2.31
10.5 to 10.99	2.51
11.0 to 11.49	2.73
11.5 to 11.99	2.98
12.0 to 12.49	3.24
12.5 to 12.99	3.53
13.0 to 13.49	3.84
13.5 to 13.99	4.18
14.0 or greater	4.36

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) The following allocations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to ballast, which may be discharged after the application of best conventional pollutant control technology by a point source subject to this subcategory, in addition to the discharge allowed by sub. (2). The allocation allowed for ballast water flow, as kg/cu m (lb/1000 gal), shall be based on those ballast waters treated at the refinery.

RCT	Effluent	Limitations	for	Rallact	Water

days low)		
low)		
English units (pounds per 1,000 gallons of flow)		

Within the range 6.0 to 9.0.

(4) The quantity and quality of pollutants or pollutant properties controlled by this subsection attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2).

(5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff which may be discharged after the application of the best conventional pollutant control technology by a point source subject to this subcategory.

(a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease based upon an analysis of any single grab or composite sample.

(b) If contaminated runoff is commingled or treated with

process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following

	BCT Effluent Limitations		
Pollutant or pollutant		Average of daily values	
property	1 day	for 30 consecutive days	
	Metric units (kilograms per 1,000 cubic		
	n	neters of flow)	
BOD_5	48.0	26.0	
TSS	33.0	21.0	
Oil and grease	15.0	8.0	
pН	(1)	(1)	
	English units (pounds per 1,000 gallons of flow)		
BOD_5	0.4	0.22	
TSS	0.28	0.18	
Oil and grease	0.13	0.067	
pH	(1)	(1)	

¹Within the range of 6.0 to 9.0

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.15 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7 and 403.13 any existing source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for existing sources (PSES). The following standards apply to the total refinery flow contribution to the POTW:

Pollutant or pollutar property	Pretreatment standards for existing sources maximum for any 1 day
	Milligrams per liter (mg/l)
Oil and grease	100.0
Ammonia as N	100.0

¹Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.13 (1) and (2).

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.16 Standards of performance for new sources (NSPS). (1) Any new source subject to this subcategory shall achieve the following new source performance standards (NSPS):

	NSPS effluent limitations			
Pollutant or pollutant	Maximum for any	1 Average of daily values		
property	day	for 30 consecutive days		
	Metric units (kilogr	cams per cubic meter of flow)		
BOD_5	11.8	6.3		
TSS	8.3	4.9		
COD^1	61.0	32.0		
Oil and grease	3.6	1.9		
Phenolic compounds	0.088	0.043		
Ammonia as N	2.8	1.3		
Sulfide	0.078	0.035		
Total chromium	0.18	0.105		
Hexavalent chromium	0.015	0.0068		
pH	(2)	(2)		
	English units (pour	nds per 1,000 gallons of flow)		
BOD_5	4.2	2.2		
TSS	3.0	1.9		
COD^1	21.7	11.2		
Oil and grease	1.3	0.7		
Phenolic compounds	0.031	0.016		
Ammonia as N	1.0	0.45		
Sulfide	0.027	0.012		
Total chromium	0.064	0.037		
Hexavalent chromium	0.0052	0.0025		
pН	(2)	(2)		
1 See footnote following	table in s. NR 279.13 (4	4).		

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

² Within the range of 6.0 to 9.0

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 24.9	1.02
25.0 to 49.9	1.06
50.0 to 74.9	1.16
75.0 to 99.9	1.26
100.0 to 124.9	1.38
125.0 to 149.9	1.5
150.0 or greater	1.57

(b) Process factor.

Process configuration	Process factor	
Less than 2.49	0.62	_
2.5 to 3.49	0.67	
3.5 to 4.49	0.8	
4.5 to 4.49	0.95	
5.5 to 5.99	1.07	
6.0 to 6.49	1.17	
6.5 to 6.99	1.27	
7.0 to 7.49	1.39	
7.5 to 7.99	1.51	
8.0 to 8.49	1.64	
8.5 to 8.99	1.79	
9.0 to 9.49	1.95	
9.5 to 9.99	2.12	
10.0 to 10.49	2.31	
10.5 to 10.99	2.51	
11.0 to 11.49	2.73	
11.5 to 11.99	2.98	
12.0 to 12.49	3.24	
12.5 to 12.99	3.53	
13.0 to 13.49	3.84	
13.5 to 13.99	4.18	
14.0 or greater	4.36	

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) The following allocations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to ballast, which may be discharged after the application of best practicable control technology currently available, by a point source subject to this subcategory, in addition to the discharge allowed by sub. (2). The allocation allowed for ballast water flow, as kg/cu m (lb/M gal), shall be based on those ballast waters treated at the refinery.

	NSPS Effluent Limitations for Ballast Water		
Pollutant or pollutant	Maximum for any	Average of daily values	
property	1 day	for 30 consecutive days	
	Metric units (kilograms per cubic meter of flow)		
BOD_5	0.048	0.026	
TSS	0.033	0.021	
COD^1	0.47	0.24	
Oil and grease	0.015	0.08	
pH	(2)	(2)	
	English units (pour	nds per 1,000 gal of flow)	
BOD_5	0.40	0.21	
TSS	0.27	0.17	
COD^1	3.9	2.0	
Oil and grease	0.126	0.067	
pН	(2)	(2)	

¹ See footnote following table in s. NR 279.13 (4).

(4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.17 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any new source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for new sources (PSNS).

(1) The following standards apply to the total refinery flow contribution to the POTW:

Pollutant or pollutant property	Pretreatment standards for new sources - maximum for any 1 day
	Milligrams per liter (mg/l)
Oil and grease	100.0
Ammonia as N	100.0

¹Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this daily maximum mass limitation for ammonia set forth in s. NR 279.16 (1) and (2).

- **(2)** The following standard is applied to the cooling tower discharge part of the total refinery flow to the POTW by multiplying:
 - (a) The standard;
 - (b) By the total refinery flow to the POTW; and
- (c) By the ratio of the cooling tower discharge flow to the total refinery flow.

Pollutant or pollutant property	Pretreatment standards for new sources - maximum for any 1 day
	Milligrams per liter (mg/l)
Total chromium	1.0

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.20 Applicability; description of the cracking subcategory. The provisions of this subcategory are applicable to all discharges from any facility that produces petroleum products by the use of topping and cracking, whether or not the facility includes any process in addition to topping and cracking. The provisions of this subcategory are not applicable, however, to facilities that include the processes specified in the petrochemical, lube or integrated subcategories.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.22 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). (1) Except as provided in 40 CFR 125.30-125.32, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available:

² Within the range of 6.0 to 9.0.

	BPT effluent limitations		
Pollutant or pollutant	Maximum for any	Average of daily values	
property	1 day	for 30 consecutive days	
	Metric units (kilograms per 1,000 m³ of feedstock)		
BOD_5	28.2	15.6	
TSS	19.5	12.6	
COD^1	210.0	109.0	
Oil and grease	8.4	4.5	
Phenolic compounds	0.21	0.1	
Ammonia as N	18.8	8.5	
Sulfide	0.18	0.082	
Total chromium	0.43	0.25	
Hexavalent chromium	0.035	0.016	
pH	(2)	(2)	
	English units (pound	s per 1,000 bbl of feedstock)	
BOD_5	9.9	5.5	
TSS	6.9	4.4	
COD^1	74.0	38.4	
Oil and grease	3.0	1.6	
Phenolic compounds	0.074	0.036	
Ammonia as N	6.6	3.0	
Sulfide	0.065	0.029	
Total chromium	0.15	0.088	
Hexavalent chromium	0.012	0.0056	

See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(2)

(2)

(a) Size factor.

pН

1000 bbl. of feedstock per stream day	Size factor
Less than 24.9	0.91
25.0 to 49.9	0.95
50.0 to 74.9	1.04
75.0 to 99.9	1.13
100.0 to 124.9	1.23
125.0 to 149.9	1.35
150.0 or greater	1.41

(b) Process factor.

Process configuration	Process factor
Less than 2.49	0.58
2.5 to 3.49	0.63
3.5 to 4.49	0.74
4.5 to 5.49	0.88
5.5 to 5.99	1.0
6.0 to 6.49	1.09
6.5 to 6.99	1.19
7.0 to 7.49	1.29
7.5 to 7.99	1.41
8.0 to 8.49	1.53
8.5 to 8.99	1.67
9.0 to 9.49	1.82
9.5 or greater	1.89

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- (3) The provisions of s. NR 279.12 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.
- (5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best practicable control technology currently available by a point source subject to this subcategory.

- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease and 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease or 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentration listed in the following table:

Pollutant or pollutant property Maximum for any 1 day Average of daily values for 30 consecutive days Metric units (kilograms per 1,000 cubic meters of Flow BOD₂ 48.0 26.0 TSS 33.0 21.0 COD¹ 360.0 180.0 Oil and grease 15.0 8.0 Phenolic compounds 0.35 0.17 (4AAP) Total chromium 0.73 0.43 Hexavalent chromium 0.062 0.028 pH (2) (2)	BPT effluent limitations				
	Pollutant or pollutant	Maximum for any	Average of daily values		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	property	1 day	for 30 consecutive days		
BODs 48.0 26.0 TSS 33.0 21.0 COD¹ 360.0 180.0 Oil and grease 15.0 8.0 Phenolic compounds 0.35 0.17 (4AAP) 0.73 0.43 Hexavalent chromium 0.062 0.028		Metric units (kilogran	ns per 1,000 cubic meters of		
TSS 33.0 21.0 COD¹ 360.0 180.0 Oil and grease 15.0 8.0 Phenolic compounds 0.35 0.17 (4AAP) Total chromium 0.73 0.43 Hexavalent chromium 0.062 0.028			flow		
COD¹ 360.0 180.0 Oil and grease 15.0 8.0 Phenolic compounds 0.35 0.17 (4AAP) Total chromium 0.73 0.43 Hexavalent chromium 0.062 0.028	BOD_5	48.0	26.0		
Oil and grease 15.0 8.0 Phenolic compounds 0.35 0.17 (4AAP) 0.73 0.43 Hexavalent chromium 0.062 0.028	TSS	33.0	21.0		
Phenolic compounds (4AAP) 0.35 0.17 Total chromium 0.73 0.062 0.43 0.028	COD^1	360.0	180.0		
(4AAP) Total chromium 0.73 0.43 Hexavalent chromium 0.062 0.028	Oil and grease	15.0	8.0		
Total chromium 0.73 0.43 Hexavalent chromium 0.062 0.028	Phenolic compounds	0.35	0.17		
Hexavalent chromium 0.062 0.028	(4AAP)				
	Total chromium	0.73	0.43		
pH (2) (2)	Hexavalent chromium	0.062	0.028		
	pН	(2)	(2)		
English units (pounds per 1,000 gallons of flow)		English units (pound	s per 1,000 gallons of flow)		
BOD ₅ 0.4 0.22	BOD_5	0.4	0.22		
TSS 0.28 0.18	TSS	0.28	0.18		
COD^{1} 3.0 1.5	COD^1	3.0	1.5		
Oil and grease 0.13 0.067	Oil and grease	0.13	0.067		
Phenolic compounds 0.0029 0.0014	Phenolic compounds	0.0029	0.0014		
(4AAP)	(4AAP)				
Total chromium 0.006 0.0035	Total chromium	0.006	0.0035		
Hexavalent chromium 0.00052 0.00023	Hexavalent chromium	0.00052	0.00023		
pH (2) (2)					

¹In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1,000 mg/l (1,000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BODs.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.23 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) Except as provided in 40 CFR 125.30 - 125.32, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable:

	BAT effluent limitations			
Pollutant or pollutant	Maximum for any Average of daily values			
property	1 day	for 30 consecutive days		
	Metric units (kilograms per 1,000 m ³ of			
	fe	edstock		
COD^1	210.0	109.0		
Ammonia as N	18.8	8.5		
Sulfide	0.18	0.082		
	English units (pounds per 1,000 bbl of feedstock)			
COD^1	74.0	38.4		
Ammonia as N	6.6	3.0		
Sulfide	0.065	0.029		

¹ See footnote following table in s. NR 279.13 (4).

² Within the range of 6.0 to 9.0

² Within the range 6.0 to 9.0.

⁽²⁾ The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days:

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 24.9	0.91	
25.0 to 49.9	0.95	
50.0 to 74.9	1.04	
75.0 to 99.9	1.13	
100.0 to 124.9	1.23	
125.0 to 149.9	1.35	
150.0 or greater	1.41	

(b) Process factor.

Process configuration	Process factor
Less than 2.49	0.58
2.5 to 3.49	0.63
3.5 to 4.49	0.74
4.5 to 5.49	0.88
5.5 to 5.99	1.0
6.0 to 6.49	1.09
6.5 to 6.99	1.19
7.0 to 7.49	1.29
7.5 to 7.99	1.41
8.0 to 8.49	1.53
8.5 to 8.99	1.67
9.0 to 9.49	1.82
9.5 or greater	1.89

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) (a) In addition to the provisions contained above pertaining to COD, ammonia and sulfide, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). For each of the regulated pollutant parameters listed below, the effluent limitation for a given refinery is the sum of the products of each effluent limitation factor times the applicable process feedstock rate, calculated as provided in 40 CFR 122.45 (b).

Note: Applicable production processes are presented in Appendix A by process type, the process identification numbers presented in this Appendix A are for the convenience of the reader. They may be cross referenced in the Development Document for Effluent Limitations Guidelines, New Source Performances Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category (EPA 440/1-82/014. Table 111-7, pp. 49-54.

40 CFR 122.45 (b) reads as follows: The calculation of any permit limitations, standards, or prohibitions which are based on production (or other measure of operation) shall be based not upon the designed production capacity but rather upon a reasonable measure of actual production of the facility, such as the production during the high month of the previous year, or the monthly average for the highest of the previous 5 years. For new sources or new dischargers, actual production shall be estimated using projected production. The time period of the measure of production shall correspond to the time period of the calculated permit limitations; for example, monthly production shall be used to calculate average monthly discharge limitations.

	BAT Effluent	Limitations Factor
Pollutant or pollutant property and process type	Maximum for any 1 day	Average of daily values for 30 con- secutive days
	Metric units (kilograms per 1,000 m of feedstock)	
Phenolic compounds (4AAP):	Of ic	eusiock)
Crude	0.037	0.009
Cracking and coking	0.419	0.102
Asphalt	0.226	0.055
Lube	1.055	0.257
Reforming and alkylation	0.377	0.092
Total chromium:		
Crude	0.03	0.011
Cracking and coking	0.34	0.118
Asphalt	0.183	0.064
Lube	0.855	0.297
Reforming and alkylation	0.305	0.106
Hexavalent chromium:		
Crude	0.0019	0.0009
Cracking and coking	0.0218	0.0098
Asphalt	0.0117	0.0053
Lube	1.0549	0.0248

Reforming and alkylation	0.0196	0.0088
	English units (pounds per 1,000 bbl of feedstock)	
Phenolic compounds (4AAP):		
Crude	0.013	0.003
Cracking and coking	0.147	0.036
Asphalt	0.079	0.019
Lube	0.369	0.09
Reforming and alkylation	0.132	0.032
Total chromium:		
Crude	0.011	0.004
Cracking and coking	0.119	0.041
Asphalt	0.064	0.022
Lube	0.299	0.104
Reforming and alkylation	0.107	0.037
Hexavalent chromium:		
Crude	0.0007	0.0003
Cracking and coking	0.0076	0.0034
Asphalt	0.0041	0.0019
Lube	0.0192	0.0087
Reforming and alkylation	0.0089	0.0031

Note: See the comprehensive example in s. NR 279.43 (3) (b).

(4) The provisions of s. NR 279.13 (4) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.

(5) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

(6) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best available technology economically achievable by a point source subject to this subcategory.

(a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.

(b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BAT efflu	ent limitations
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 con- secutive days
		ilograms per 1,000 eters of flow)
Phenolic compounds (4AAP)	0.35	0.17
Total chromium	0.6	0.21
Hexavalent chromium	0.062	0.028
COD^1	360.0	180.0
	English units (po	ounds per 1,000 gal-
	lons	of flow)
Phenolic compounds (4AAP)	.0029	.0014
Total chromium	.005	.0018
Hexavalent chromium	.00052	.00023
COD ¹	3.0	1.5

¹In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1000 mg/l (1000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD₅.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.24 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). (1) Any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT):

	BCT Effluent Limitations	
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Metric units (kilograms per 1,000 m³ of feedstock)	
BOD ₅	28.2	15.6
TSS	19.5	12.6
Oil and grease	8.4	4.5
pH	(1)	(1)
	English units (poun	ds per 1,000 bbl feedstock)
BOD ₅	9.9	5.5
TSS	6.9	4.4
Oil and grease	3.0	1.6
-U	(1)	(1)

Within the range of 6.0 to 9.0

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 barrels of feedstock per stream day	Size factor	
Less than 24.9	0.91	
25.0 to 49.9	0.95	
50.0 to 74.9	1.04	
75.0 to 99.9	1.13	
100.0 to 124.9	1.23	
125.0 to 149.9	1.35	
150.0 or greater	1.41	

(b) Process factor.

Process configuration	Process factor
Less than 2.49	0.58
2.5 to 3.49	0.63
3.5 to 4.49	0.74
4.5 to 5.49	0.88
5.5 to 5.99	1.0
6.0 to 6.49	1.09
6.5 to 6.99	1.19
7.0 to 7.49	1.29
7.5 to 7.99	1.41
8.0 to 8.49	1.53
8.5 to 8.99	1.67
9.0 to 9.49	1.82
9.5 or greater	1.89

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) The provisions of s. NR 279.14 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.

(4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. **(2)**.

(5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff which may be discharged after the application of the best conventional pollutant control technology by a point source subject to this subcategory.

(a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease based upon an analysis of any single grab or composite sample.

(b) If contaminated runoff is commingled or treated with

process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BCT Effluent Limitations		
Pollutant or pollutant property	Maximum for any 1 day	Average of daily for 30 consecutiv	
r · r · v	Metric units (kilograms per 1,000 cubic me-		
	ter	s of flow)	
BOD ₅	48.0	26.0	
TSS	33.0	21.0	
Oil and grease	15.0	8.0	
pH	(1)	(1)	
	English units (pounds per 1,000 gallons of flow)		
BOD ₅	0.4	0.22	
TSS	0.28	0.18	
Oil and grease	0.13	0.067	
pH	(1)	(1)	

¹Within the range of 6.0 to 9.0

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.25 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for existing sources (PSES). The following standards apply to the total refinery flow contribution to the POTW:

Pollutant or pollutant property	Pretreatment standards for existing sources- maximum for any 1 day
	Milligrams per liter (mg/l)
Oil and grease	100.0
Ammonia as N	1100.0

¹Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.23 (1) and (2).

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.26 Standards of performance for new sources (NSPS). (1) Any new source subject to this subcategory shall achieve the following new source performance standards (NSPS):

	NSPS effluent limitations	
Pollutant or pollutant	Maximum for any Average of daily values 1 day for 30 consecutive days	
property		
	Metric units (kilogran	ns per 1,000 m ³ of
		edstock)
BOD ₅	16.3	8.7
TSS	11.3	7.2
COD1	118.0	61.0
Oil and grease	4.8	2.6
Phenolic compounds	0.119	0.058
Ammonia as N	18.8	8.6
Sulfide	0.105	0.048
Total chromium	0.24	0.14
Hexavalent chromium	0.02	0.0088
pH	(2)	(2)
	English units (pounds	s per 1,000 bbl of feedstock)
BOD ₅	5.8	3.1
TSS	4.0	2.5
COD1	41.5	21.0
Oil and grease	1.7	0.93
Phenolic compounds	0.042	0.020
Ammonia as N	6.6	3.0
Sulfide	0.037	0.017
Total chromium	0.084	0.049
Hexavalent chromium	0.0072	0.0032
pН	(2)	(2)

See footnote following table in s. NR 279.13 (4)

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

²Within the range of 6.0 to 9.0.

- **(2)** The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any 1 day and maximum average of daily values for 30 consecutive days.
 - (a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 24.9	0.91
25.0 to 49.9	0.95
50.0 to 74.9	1.04
75.0 to 99.9	1.13
100.0 to 124.9	1.23
125.0 to 149.9	1.35
150.0 or greater	1.41

Process configuration	Process factor
Less than 2.49	0.58
2.5 to 3.49	0.63
3.5 to 4.49	0.74
4.5 to 5.49	0.88
5.5 to 5.99	1.0
6.0 to 6.49	1.09
6.5 to 6.99	1.19
7.0 to 7.49	1.29
7.5 to 7.99	1.41
8.0 to 8.49	1.53
8.5 to 8.99	1.67
9.0 to 9.49	1.82
9.5 or greater	1.89

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- (3) The provisions of s. NR 279.16 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.27 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any new source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for new sources (PSNS):

(1) The following standards apply to the total refinery flow contribution to the POTW:

Pollutant or pollutant property	Pretreatment standards for new sources - maximum for any 1 day
	Milligrams per liter (mg/l)
Oil and grease	100.0
Ammonia as N	1100.0

¹Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.26 (1) and (2).

- **(2)** The following standard is applied to the cooling tower discharge part of the total refinery flow to the POTW by multiplying:
 - (a) The standard;
 - (b) By the total refinery flow to the POTW; and
- (c) By the ratio of the cooling tower discharge flow to the total refinery flow.

Pollutant or pollutant	Pretreatment standards for new
property	sources - maximum for any 1 day
	Milligrams per liter (mg/l)
Total chromium	1.0

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.30 Applicability; description of the petrochemical subcategory. The provisions of this subcategory are applicable to all discharges from any facility that produces petroleum products by the use of topping, cracking, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, and petrochemical operations. The provisions of this subchapter are not applicable, however, to facilities that include the processes specified in the lube or integrated subcategories.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.31 Specialized definitions. For the purpose of this subchapter: "Petrochemical operations" means the production of second-generation petrochemicals (i.e., alcohols, ketones, cumene, styrene, etc.) or first generation petrochemicals and isomerization products (i.e., BTX, olefins, cyclohexane, etc.) when 15% or more of refinery production is as first-generation petrochemicals and isomerization products.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.32 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). (1) Except as provided in 40 CFR 125.30 - 125.32, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT):

	BPT effluent limitations	
Pollutant or pollutant	Maximum for any	Average of daily values
property	1 day	for 30 consecutive days
	Metric units (kilogra	ms per 1,000 m ³ of
	fee	edstock)
BOD_5	34.6	18.4
TSS	23.4	14.8
COD^1	210.0	109.0
Oil and grease	11.1	5.9
Phenolic compounds	0.25	0.12
Ammonia as N	23.4	10.6
Sulfide	0.22	0.099
Total chromium	0.52	0.3
Hexavalent chromium	0.046	0.02
pН	(2)	(2)
	English units (pounds	per 1,000 bbl of feedstock)
BOD_5	12.1	6.5
TSS	8.3	5.25
COD^1	74.0	38.4
Oil and grease	3.9	2.1
Phenolic compounds	0.088	0.0425
Ammonia as N	8.25	3.8
Sulfide	0.078	0.035
Total chromium	0.183	0.107
Hexavalent chromium	0.016	0.0072
pН	(2)	(2)

¹ See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 24.9	0.73	
25.0 to 49.9	0.76	
50.0 to 74.9	0.83	
75.0 to 99.9	0.91	
100.0 to 124.9	0.99	
125.0 to 149.9	1.08	
150.0 or greater	1.13	

²Within the range of 6.0 to 9.0

Process configuration	Process factor
Less than 4.49	0.73
4.5 to 5.49	0.80
5.5 to 5.99	0.91
6.0 to 6.49	0.99
6.5 to 6.99	1.08
7.0 to 7.49	1.17
7.5 to 7.99	1.28
8.0 to 8.49	1.39
8.5 to 8.99	1.51
9.0 to 9.49	1.65
9.5 or greater	1.72

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- **(3)** The provisions of s. NR 279.12 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subchapter.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.
- (5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best practicable control technology currently available by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease and 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease or 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BPT effluer	nt limitations
		Average of daily
Pollutant or pollutar	t Maximum for any 1	values for 30 con-
property	day	secutive days
		rams per 1,000 cubic
		of flow)
BOD ₅	48.0	26.0
TSS	33.0	21.0
COD ¹	360.0	180.0
Oil and grease	15.0	8.0
Phenolic compounds (4AAP)	0.35	0.17
Total chromium	0.73	0.43
Hexavalent chromium	0.062	0.028
pH	(2)	(2)
	English units (pound	s per 1,000 gallons of
	fle	ow)
BOD_5	0.4	0.22
TSS	0.28	0.18
COD ¹	3.0	1.5
Oil and grease	0.13	0.067
Phenolic compounds (4AAP)	0.0029	0.0014
Total chromium	0.0060	0.0035
Hexavalent chromium	0.00052	0.00023
**	(2)	

pH (2) (2)

¹ In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1,000 mg/l (1,000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in

the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD₅.

² Within the range 6.0 to 9.0.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.33 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) Except as provided in 40 CFR 125.30 - 125.32, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT):

	BAT effluent limitations	
Pollutant or pollutant	Maximum for any	Average of daily values
property	1 day	for 30 consecutive days
	Metric units (ki	lograms per 1,000 m³
	of f	eedstock)
COD^1	210.0	109.0
Ammonia as N	23.4	10.6
Sulfide	0.22	0.099
	English units (pounds	per 1,000 bbl of feedstock)
COD^1	74.0	38.4
Ammonia as N	8.25	3.8
Sulfide	0.078	0.035

¹ See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 24.9	0.73
25.0 to 49.9	0.76
50.0 to 74.9	0.83
75.0 to 99.9	0.91
100.0 to 124.9	0.99
125.0 to 149.9	1.08
150.0 or greater	1.13

(b) Process factor.

Process configuration	Process factor
Less than 4.49	0.73
4.5 to 5.49	0.8
5.5 to 5.99	0.91
6.0 to 6.49	0.99
6.5 to 6.99	1.08
7.0 to 7.49	1.17
7.5 to 7.99	1.28
8.0 to 8.49	1.39
8.5 to 8.99	1.51
9.0 to 9.49	1.65
9.5 or greater	1.72

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) In addition to the provisions contained above pertaining to COD, ammonia, and sulfide, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). For each of the regulated pollutant parameters listed below, the effluent limitation for a given refinery is the sum of the products of each effluent limitation factor times the applicable process feedstock rate, calculated as provided in 40 CFR 122.45 (b).

Note: Applicable production processes are presented in Appendix A by process type. The process identification numbers presented in this Appendix A are for the convenience of the reader. They can be cross-referenced in the Development Document for Effluent Limitations Guidelines, New Source Performance Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category (EPA440/1-82/014). Table III-7, pp. 49-54.

40 CFR 122.45 (b) reads as follows: The calculation of any permit limitations, standards, or prohibitions which are based on production (or other measure of operation) shall be based not upon the designed production capacity but rather upon a

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

reasonable measure of actual production of the facility, such as the production during the high month of the previous year, or the monthly average for the highest of the previous 5 years. For new sources or new dischargers, actual production shall be estimated using projected production. The time period of the measure of production shall correspond to the time period of the calculated permit limitations; for example, monthly production shall be used to calculate average monthly discharge limitations.

Pollutant or pollutant property and process type Maximum for any lady Average of daily values for 30 (consum pounds (4AAP)); Consecutive days consecutiv		BAT Effluent L	imitations Factor	•
Phenolic compounds (4AAP): Crude	Pollutant or pollutant prop-			y
Phenolic compounds (4AAP): Crude		Maximum for any		con-
Phenolic compounds (4AAP): Crude	and process type			
Phenolic compounds (4AAP): Crude				
Crude 0.037 0.009 Cracking and coking 0.419 0.102 Asphalt 0.226 0.055 Lube 1.055 0.257 Reforming and alkylation 0.377 0.092 Total chromium: Crude 0.03 0.011 Cracking and coking 0.34 0.118 Asphalt 0.855 0.297 Reforming and alkylation 0.305 0.106 Hexavalent chromium: 0.0019 0.0009 Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation 0.0196 0.0088 English units (pounds per 1,000 bbl feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032		feeds	stock)	
Cracking and coking 0.419 0.102 Asphalt 0.226 0.055 Lube 1.055 0.257 Reforming and alkylation 0.377 0.092 Total chromium: Total chromium: Crude 0.03 0.011 Cracking and coking 0.34 0.118 0.064 Asphalt 0.183 0.064 0.297 Reforming and alkylation 0.305 0.106 Hexavalent chromium: Crude 0.0019 0.0009 Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation 0.0196 0.0088 English units (pounds per 1,000 bbl feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 <td></td> <td></td> <td></td> <td></td>				
Asphalt 0.226 0.055 Lube 1.055 0.257 Reforming and alkylation 0.377 0.092 Total chromium: Crude 0.03 0.011 Cracking and coking 0.34 0.118 Asphalt 0.183 0.064 Lube 0.855 0.297 Reforming and alkylation 0.305 0.106 Hexavalent chromium: Crude 0.0019 0.0009 Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation 0.0196 0.0008 Fenglish units (pounds per 1,000 bbl of feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0041 0.0019 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0041 0.0019 Lube 0.0094 0.0019 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.00192 0.0087				
Lube 1.055 0.257 Reforming and alkylation 0.377 0.092 Total chromium: 0.03 0.011 Crude 0.03 0.011 Cracking and coking 0.34 0.118 Asphalt 0.183 0.064 Lube 0.855 0.297 Reforming and alkylation 0.305 0.106 Hexavalent chromium: 0.0019 0.0009 Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation 0.0196 0.0008 English units (pounds per 1,000 bbl of feedstock) Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09				
Reforming and alkylation				
Total chromium: Crude				
Crude 0.03 0.011 Cracking and coking 0.34 0.118 Asphalt 0.183 0.064 Lube 0.855 0.297 Reforming and alkylation 0.305 0.106 Hexavalent chromium: 0.0019 0.0009 Crude 0.0019 0.0098 Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation 0.0196 0.0088 English units (pounds per 1,000 bbl of feedstock) English units (pounds per 1,000 bbl of feedstock) Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022		0.377	0.092	
Cracking and coking 0.34 0.118 Asphalt 0.183 0.064 Lube 0.855 0.297 Reforming and alkylation 0.305 0.106 Hexavalent chromium: Use 0.0019 0.0009 Cracking and coking 0.0218 0.0098 0.053 Asphalt 0.0117 0.053 0.0248 Reforming and alkylation 0.0196 0.0088 0.0088 English units (pounds per 1,000 bbl of feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037				
Asphalt				
Lube 0.855 0.297 Reforming and alkylation 0.305 0.106 Hexavalent chromium: 0.0019 0.0009 Crude 0.0218 0.0098 Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation English units (pounds per 1,000 bbl detectock) of Crude 0.013 0.003 Cracking and coking 0.014 0.004 Asphalt 0.004 0.002 Lube 0.299 0.104 Reforming and alkyla				
Reforming and alkylation 0.305 0.106 Hexavalent chromium: Crude 0.0019 0.0009 Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation English units (pounds per 1,000 bbl feedstock) of Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0034 Cracking and coking 0.0007 0.0003 Cracking and coking 0.0041 0.0019 <td></td> <td></td> <td></td> <td></td>				
Hexavalent chromium: Crude	Lube	0.855	0.297	
Crude Cracking and coking Asphalt 0.0019 0.0218 0.0098 0.0998 Lube Reforming and alkylation 0.0196 0.0248 English units (pounds per 1,000 bbl reedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0034 Cracking and coking 0.0007 0.0003 Cracking and coking 0.0007 0.0003 Cracking and coking 0.0041 0.0019 Lube 0.0094 0.0019 Lube 0.0094 0.0019		0.305	0.106	
Cracking and coking 0.0218 0.0098 Asphalt 0.0117 0.053 Lube 0.0549 0.0248 Reforming and alkylation English units (pounds per 1,000 bbl of feedstock) English units (pounds per 1,000 bbl feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Hexavalent chromium:			
Asphalt Lube Reforming and alkylation Phenolic compounds (4AAP): Crude Cracking and coking Asphalt Lube 0.013 0.003 Cracking and alkylation Total chromium: Crude 0.013 0.003 Reforming and alkylation 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 0.0017	Crude	0.0019	0.0009	
Lube 0.0549 0.0248 Reforming and alkylation 0.0196 0.0088 English units (pounds per 1,000 bbl of feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0007 0.0003 Cracking and coking 0.0041 0.0019 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Cracking and coking	0.0218	0.0098	
Reforming and alkylation 0.0196 0.0088 English units (pounds per 1,000 bbl feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Asphalt	0.0117	0.053	
English units (pounds per 1,000 bbl feedstock) of feedstock) Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0019 0.0087	Lube	0.0549	0.0248	
Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Reforming and alkylation			
Phenolic compounds (4AAP): Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087				of
Crude 0.013 0.003 Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: 0.011 0.004 Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087		feeds	stock)	
Cracking and coking 0.147 0.036 Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087				
Asphalt 0.079 0.019 Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087				
Lube 0.369 0.09 Reforming and alkylation 0.132 0.032 Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087				
Reforming and alkylation 0.132 0.032 Total chromium: 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087				
Total chromium: Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087		0.369		
Crude 0.011 0.004 Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087		0.132	0.032	
Cracking and coking 0.119 0.041 Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Total chromium:			
Asphalt 0.064 0.022 Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087			0.004	
Lube 0.299 0.104 Reforming and alkylation 0.107 0.037 Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087				
Reforming and alkylation 0.107 0.037 Hexavalent chromium: 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087				
Hexavalent chromium: Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Lube	0.299	0.104	
Crude 0.0007 0.0003 Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Reforming and alkylation	0.107	0.037	
Cracking and coking 0.0076 0.0034 Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Hexavalent chromium:			
Asphalt 0.0041 0.0019 Lube 0.0192 0.0087	Crude	0.0007	0.0003	
Lube 0.0192 0.0087	Cracking and coking	0.0076	0.0034	
	Asphalt	0.0041	0.0019	
Reforming and alkylation 0.0089 0.0031	Lube	0.0192	0.0087	
	Reforming and alkylation	0.0089	0.0031	

Note: See the comprehensive example in s. NR 279.43 (3) (b)

- (4) The provisions of s. NR 279.13 (4) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (5) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.
- (6) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best available technology economically achievable by a point source subject to this
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.

(b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BAT efflue	nt limitations
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 con- secutive days
	, ,	rams per 1,000 cubic
	meters	s of flow)
Phenolic compounds (4AAP)	0.35	0.17
Total chromium	0.6	0.21
Hexavalent chromium	0.062	0.028
COD^1	360.0	180.0
	English units (pound	ds per 1,000 gallons of
	f	low)
Phenolic compounds (4AAP)	.0029	.0014
Total chromium	.005	.0018
Hexavalent chromium	.00052	.00023
COD ¹	3.0	1.5

In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1000 mg/l (1000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD5.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.34 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). (1) Any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT):

BCT Effluent Limitations	
Maximum for any 1 day	Average of daily values for 30 consecutive days
,	ilograms per 1,000 m³
OI I	reedstock)
34.6	18.4
23.4	14.8
11.1	5.9
(1)	(1)
English units (pounds per 1,000 bbl of feedstock)	
12.1	6.5
8.3	5.25
3.9	2.1
(1)	(1)
	Maximum for any 1 day Metric units (ki of f 34.6 23.4 11.1 (1) English units (pound: 12.1 8.3 3.9

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 24.9	0.73
25.0 to 49.9	0.76
50.0 to 74.9	0.83
75.0 to 99.9	0.91
100.0 to 124.9	0.99
125.0 to 149.9	1.08
150.0 or greater	1.13

Process configuration	Process factor
Less than 4.49	0.73
4.5 to 5.49	0.8
5.5 to 5.99	0.91
6.0 to 6.49	0.99
6.5 to 6.99	1.08
7.0 to 7.49	1.17
7.5 to 7.99	1.28
8.0 to 8.49	1.39
8.5 to 8.99	1.51
9.0 to 9.49	1.65
9.5 or greater	1.72

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- (3) The provisions of s. NR 279.14 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub.
- (5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff which may be discharged after the application of the best conventional pollutant control technology by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table.

BCT Effluent Limitations		
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Metric units (kilogran	ns per 1,000 cubic meters of
		flow)
BOD ₅	48.0	26.0
TSS	33.0	21.0
Oil and grease	15.0	8.0
pH	(1)	(1)
	English units (pound	s per 1,000 gallons of flow)
BOD ₅	0.4	0.22
TSS	0.28	0.18
Oil and grease	0.13	0.067
pH	(1)	(1)

¹ Within the range of 6.0 to 9.0.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.35 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7 and 403.13, any existing source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for existing sources (PSES). The following standards apply to the total refinery flow contribution to the POTW:

er (mg/l)

¹Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.33 (1) and (2).

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.36 Standards of performance for new **sources (NSPS).** (1) Any new source subject to this subcategory shall achieve the following new source performance standards (NSPS):

	NSPS effluent limitations		
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days	
	Metric units (kilograms per 1,000 m ³		
		eedstock)	
BOD_5	21.8	11.6	
TSS	14.9	9.5	
COD^1	133.0	69.0	
Oil and grease	6.6	3.5	
Phenolic compounds	0.158	0.077	
Ammonia as N	23.4	10.7	
Sulfide	0.14	0.063	
Total chromium	0.32	0.19	
Hexavalent chromium	0.025	0.012	
pH	(2)	(2)	
	English units (pounds	per 1,000 bbl of feedstock)	
BOD_5	7.7	4.1	
TSS	5.2	3.3	
COD^1	47.0	24.0	
Oil and grease	2.4	1.3	
Phenolic compounds	0.056	0.027	
Ammonia as N	8.3	3.8	
Sulfide	0.05	0.022	
Total chromium	0.116	0.068	
Hexavalent chromium	0.0096	0.0044	
pН	(2)	(2)	

See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 24.9	0.73	
25.0 to 49.9	0.76	
50.0 to 74.9	0.83	
75.0 to 99.9	0.91	
100.0 to 124.9	0.99	
125.0 to 149.9	1.08	
150.0 or greater	1.13	

(b) Process factor.

Process configuration	Process factor
Less than 4.49	0.73
4.5 to 5.49	0.8
5.5 to 5.99	0.91
6.0 to 6.49	0.99
6.5 to 6.99	1.08
7.0 to 7.49	1.17
7.5 to 7.99	1.28
8.0 to 8.49	1.39
8.5 to 8.99	1.51
9.0 to 9.49	1.65
9.5 or greater	1.72

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- (3) The provisions of s. NR 279.16 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

² Within the range of 6.0 to 9.0.

cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.37 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any new source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for new sources (PSNS).

(1) The following standards apply to the total refinery flow contribution to the POTW.

Pollutant or pollutant	Pretreatment standards for new sources-	
property	maximum for any 1 day	
	Milligrams per liter (mg/l)	
Oil and grease	100.0	
Ammonia as N	100.0	

¹ Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.36 (1) and (2).

- **(2)** The following standard is applied to the cooling tower discharge part of the total refinery flow to the POTW by multiplying:
 - (a) The standard;
 - (b) By the total refinery flow to the POTW; and
- (c) By the ratio of the cooling tower discharge flow to the total refinery flow.

Pollutant or pollutant property	Pretreatment standards for new sources - maximum for any 1 day	
Total chromium	Milligrams per liter (mg/l)	

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.40 Applicability; description of the lube subcategory. The provisions of this subcategory are applicable to all discharges from any facility that produces petroleum products by the use of topping, cracking, and lube oil manufacturing processes, whether or not the facility includes any process in addition to topping, cracking, and lube oil manufacturing processes. The provisions of this subcategory are not applicable, however, to facilities that include the processes specified in the petrochemical and integrated subcategories.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.42 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). (1) Except as provided in 40 CFR 125.30 - 125.32 any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT):

	BPT effluent limitations		
Pollutant or pollutant	Maximum for any Average of daily values		
property	1 day for 30 consecutive days		
	Metric units (kilogran	ns per 1,000 m ³ of	
	fee	edstock)	
BOD_5	50.6	25.8	
TSS	35.6	22.7	
COD^1	360.0	187.0	
Oil and grease	16.2	8.5	
Phenolic compounds	0.38	0.184	
Ammonia as N	23.4	10.6	
Sulfide	0.33	0.150	
Total chromium	0.77	0.45	
Hexavalent chromium	0.068	0.03	
pH	(2)	(2)	
	English units (pounds	per 1,000 bbl of feedstock)	
BOD_5	17.9	9.1	
TSS	12.5	8.0	
COD^1	127.0	66.0	
Oil and grease	5.7	3.0	
Phenolic compounds	0.133	0.065	
Ammonia as N	8.3	3.8	
Sulfide	0.118	0.053	
Total chromium	0.273	0.16	
Hexavalent chromium	0.024	0.011	
pH	(2)	(2)	

See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream	Size factor
Less than 49.9	0.71
50.0 to 74.9	0.74
75.0 to 99.9	0.81
100.0 to 124.9	0.88
125.0 to 149.9	0.97
150.0 to 174.9	1.05
175.0 to 199.9	1.14
200.0 or greater	1.19

(b) Process factor.

Process configuration	Process factor	
Less than 6.49	0.81	
6.5 to 7.49	0.88	
7.5 to 7.99	1.0	
8.0 to 8.49	1.09	
8.5 to 8.99	1.19	
9.0 to 9.49	1.29	
9.5 to 9.99	1.41	
10.0 to 10.49	1.53	
10.5 to 10.99	1.67	
11.0 to 11.49	1.82	
11.5 to 11.99	1.98	
12.0 to 12.49	2.15	
12.5 to 12.99	2.34	
13.0 or greater	2.44	

(c) Example of the application of the above factors. Example
 Lube refinery 125,000 bbl per steam day throughout.

² Within the range of 6.0 to 9.0.

Calculations of the Process

Configuration			
rocess category Process included			
Atm crude distillation	1		
Vacuum, crude distillation			
Desalting			
Fluid cat. cracking	6		
Visbreaking			
Thermal cracking			
Moving bed cat. cracking			
Hydrocracking			
Fluid coking			
Delayed coking			
Further defined in the develop-	13		
ment document			
Asphalt production	12		
Asphalt oxidation			
Asphalt emulsifying			
	Process included Atm crude distillation Vacuum, crude distillation Desalting Fluid cat. cracking Visbreaking Thermal cracking Moving bed cat. cracking Hydrocracking Fluid coking Delayed coking Further defined in the development document Asphalt production Asphalt oxidation		

Process	Capacity (1,000 bbl per stream day)	Capacity relative to throughput	Weighting factor	Processing configuration
Crude:				
Atm	125.0	1.0		
Vacuum	60.0	0.48		
Desalting	125.0	1.0		
Total		2.48	x1	=2.48
Cracking:				
FCC	41.0	0.328		
Hydro-				
cracking	20.0	0.16		
Total		0.488	x6	=2.93
Lubes	5.3	0.042		
	4.0	0.032		
	4.9	0.039		
Total		0.113	x13	=1.47
Asphalt	4.0	0.032	x12	=0.88
Refinery				
process				
configuration				=7.26

Notes: See table s. NR 279.42 (2) (b) for process factor. Process factor = 0.88. See Table s. NR 279.42 (2) (a) for size factor for 125,000 bbl per stream day lube refinery. Size factor = 0.97.

To calculate the limits for each parameter, multiply the limit s. NR 279.42 (1) by both the process factor and size factor. BOD₅ limit (maximum for any 1 day) = 17.9 x $0.88 \times 0.97 = 15.3$ lb. per 1,000 bbl of feedstock.

- **(3)** The provisions of s. NR 279.12 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.
- (5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best practicable control technology currently available by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease and 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease or 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated

runoff as determined by the department times the concentrations listed in the following table:

	BPT effluent limitations		
Pollutant or pollutant	Maximum for any Average of daily		
property	1 day	values for 30 con-	
		secutive days	
		rams per 1,000 cubic	
	meters	s of flow)	
BOD ₅	48.0	26.0	
TSS	33.0	21.0	
COD^1	360.0	180.0	
Oil and grease	15.0	8.0	
Phenolic compounds (4AAP)	0.35	0.17	
Total chromium	0.73	0.43	
Hexavalent chromium	0.062	0.028	
pН	(2)	(2)	
	English units (pounds per 1,000 gallons of		
	flow)		
BOD ₅	0.4	0.22	
TSS	0.28	0.18	
COD^1	3.0	1.5	
Oil and grease	0.13	0.067	
Phenolic compounds (4AAP)	0.0029	0.0014	
Total chromium	0.006	0.0035	
Hexavalent chromium	0.00052	0.00023	
pH	(2)	(2)	

¹ In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1,000 mg/l (1,000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD₅.

² Within the range 6.0 to 9.0.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) Except as provided in 40 CFR 125.30-125.32, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT):

	BAT effluent limitations	
Pollutant or pollutant	Maximum for any Average of daily	
property	1 day	for 30 consecutive days
	Metric units (kilograms per 1,000 m ³ of	
	feedstock)	
COD^1	360.0	187.0
Ammonia as N	23.4	10.6
Sulfide	0.33	0.15
	English units (pounds per 1,000 bbl of feedstock)	
COD^1	127.0	66.0
Ammonia as N	8.3	3.8
Sulfide	0.118	0.053

¹See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 49.9	0.71	
50.0 to 74.9	0.74	
75.0 to 99.9	0.81	
100.0 to 124.9	0.88	
125.0 to 149.9	0.97	
150.0 to 174.9	1.05	
175.0 to 199.9	1.14	
200.0 or greater	1.19	

Process configuration	Process factor
Less than 6.49	0.81
6.5 to 7.49	0.88
7.5 to 7.99	1.0
8.0 to 8.49	1.09
8.5 to 8.99	1.19
9.0 to 9.49	1.29
9.5 to 9.99	1.41
10.0 to 10.49	1.53
10.5 to 10.99	1.67
11.0 to 11.49	1.82
11.5 to 11.99	1.98
12.0 to 12.49	2.15
12.5 to 12.99	2.34
13.0 or greater	2.44

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) (a) In addition to the provisions contained above pertaining to COD, ammonia and sulfide any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). For each of the regulated pollutant parameters listed below, the effluent limitation for a given refinery is the sum of the products of each effluent limitation factor times the applicable refinery process feedstock rate, calculated as provided in 40 CFR 122.45 (b).

Note: Applicable production processes are presented in Appendix A by process type. the process identification numbers presented in this Appendix A are for the convenience of the reader. They may be cross referenced in the Development Document for Effluent Limitations Guidelines, New Source Performances Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category (EPA 440/1-82/014. Table 111-7, pp. 49-54.

40 CFR 122.45 (b) reads as follows: The calculation of any permit limitations, standards, or prohibitions which are based on production (or other measure of operation) shall be based not upon the designed production capacity but rather upon a reasonable measure of actual production of the facility, such as the production during the high month of the previous year, or the monthly average for the highest of the previous 5 years. For new sources or new dischargers, actual production shall be estimated using projected production. The time period of the measure of production shall correspond to the time period of the calculated permit limitations; for example, monthly production shall be used to calculate average monthly discharge limitations

BAT effluent limitation factor Average of daily Pollutant or pollutant Maximum for any values for 30 property and process type secutive days Metric units (kilograms per 1,000 m³ Phenolic compounds (4AAP): 0.037 0.009 Crude 0.102 Cracking and coking 0.419 0.055 Asphalt 0.226 Lube 1.055 0.257 Reforming and alkylation 0.377 0.092 Total chromium: 0.03 0.011 Crude Cracking and coking 0.34 0.118 0.183 0.064 Asphalt 0.855 0.297 Lube Reforming and alkylation 0.305 0.106 Hexavalent chromium: Crude 0.0019 0.0009 0.0218 0.0096 Cracking and coking Asphalt 0.0117 0.0053 0.0549 0.0248 Lube Reforming and alkylation 0.0196 0.0088

	English units (pour feeds	• '
Phenolic compounds (4AAP):		
Crude	0.013	0.003
Cracking and coking	0.147	0.036
Asphalt	0.079	0.019
Lube	0.369	0.09
Reforming and alkylation	0.132	0.032
Total chromium:		
Crude	0.011	0.004
Cracking and coking	0.119	0.041
Asphalt	0.064	0.022
Lube	0.299	0.104
Reforming and alkylation	0.107	0.037
Hexavalent chromium:		
Crude	0.0007	0.0003
Cracking and coking	0.0076	0.0034
Asphalt	0.0041	0.0019
Lube	0.0192	0.0087
Reforming and alkylation	0.0069	0.0031

(b) Example application of effluent limitations guidelines as applicable to phenolic compounds, hexavalent chromium and total chromium. The following example presents the derivation of a BAT phenolic compounds (4AAP) effluent limitation (30 day average) for a petroleum refinery permit. This methodology is also applicable to hexavalent chromium and total chromium.

Refiner	J F	Process feedstock rate 1,000 bbl/day
1.	Atmospheric crude distillation	100
2.	Crude desalting	50
3.	Vacuum crude distillation	75
	Total crude processes (C)	225
6.	Fluid catalytic cracking	25
10. Hydrocracking		20
	Total cracking and coking processes (K)	45
18. Asphalt production: Total asphalt processes (A)		(A) 5
21. Hydrofining: Total lube processes (L)		3
8. Catalytic reforming: Total reforming and		10
	alkylation processes (R)	

Note: $-30 = \overline{\text{day}}$ average phenolic compounds (4AAP) discharge, $1b/\overline{\text{day}}$ $(0.003)(225) + (0.036)(45) + (0.019)(5) + (0.09)(3) + (0.032)(10) + 2.98 \ 1b/\overline{\text{day}}$.

- **(4)** The provisions of s. NR 279.13 (4) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (5) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.
- **(6)** The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best available technology economically achievable by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceeds 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BAT efflue	nt limitations
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Metric units (kilog	rams per 1,000 cubic
	meters	s of flow)
Phenolic compounds (4AAP)	0.35	0.17
Total chromium	0.6	0.21
Hexavalent chromium	0.062	0.028
COD^1	360.0	180.0
	English units (pou	nds per 1,000 gallons
	of	flow)
Phenolic compounds (4AAP)	.0029	.0014
Total chromium	.005	.0018
Hexavalent chromium	.00052	.00023
COD1	3.0	1.5

¹In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1000 mg/l (1000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD₅.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.44 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). (1) Any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT):

	BCT Effluent Limitations	
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Metric units (kilograms per 1,000 m ³	
		eedstock)
BOD_5	50.6	25.8
TSS	35.6	22.7
Oil and grease	16.2	8.5
pH	(1)	(1)
	English units (pound	s per 1,000 bbl of feedstock)
BOD_5	17.9	9.1
TSS	12.5	8.0
Oil and grease	5.7	3.0
pН	(1)	(1)

¹ Within the range of 6.0 to 9.0.

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 49.9	0.71
50.0 to 74.9	0.74
75.0 to 99.9	0.81
100.0 to 124.9	0.88
125.0 to 149.9	0.97
150.0 to 174.9	1.05
175.0 to 199.9	1.14
200.0 or greater	1.19

(b) Process factor.

Process configuration	Process factor
Less than 6.49	0.81
6.5 to 7.49	0.88
7.5 to 7.99	1.0
8.0 to 8.49	1.09
8.5 to 8.99	1.19
9.0 to 9.49	1.29
9.5 to 9.99	1.41
10.0 to 10.49	1.53
10.5 to 10.99	1.67
11.0 to 11.49	1.82
11.5 to 11.99	1.98
12.0 to 12.49	2.15
12.5 to 12.99	2.34
13.0 or greater	2.44

- **(3)** The provisions of s. NR 279.14(3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2).
- (5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff which may be discharged after the application of the best conventional pollutant control technology by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceed 110 mg/l oil and grease is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BCT Effluent Limitations	
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	Metric units (kilogran	ns per 1,000 cubic meters of
		flow)
BOD ₅	48.0	26.0
TSS	33.0	21.0
Oil and grease	15.0	8.0
pH	(1)	(1)
	English units (pound	s per 1,000 gallons of flow)
BOD_5	0.4	0.22
TSS	0.28	0.18
Oil and grease	0.13	0.067
pН	(1)	(1)

Within the range of 6.0 to 9.0.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.45 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7 and 403.13 any existing source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for existing sources (PSES). The following standards apply to the total refinery flow contribution to the POTW:

Pollutant or pollutant property	Pretreatment standards for existing sources - maximum for any 1 day	
	Milligrams per liter (mg/l)	
Oil and grease	100.0	
Ammonia as N	1100.0	

¹ Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.43 (1) and (2).

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.46 Standards of performance for new sources (NSPS). (1) Any new source subject to this subcategory shall achieve the following new source performance standards (NSPS):

	NSPS effluent limitations	
Pollutant or pollutant	Maximum for any	Average of daily values
property	1 day	for 30 consecutive days
		ilograms per 1,000 m³
	of f	reedstock)
BOD_5	34.6	18.4
TSS	23.4	14.9
COD^1	245.0	126.0
Oil and grease	10.5	5.6
Phenolic compounds	0.25	0.12
Ammonia as N	23.4	10.7
Sulfide	0.22	0.1
Total chromium	0.52	0.31
Hexavalent chromium	0.046	0.021
pH	(2)	(2)
	English units (pounds	s per 1,000 bbl of feedstock)
BOD ₅	12.2	6.5
TSS	8.3	5.3
COD^1	87.0	45.0
Oil and grease	3.8	2.0
Phenolic compounds	0.088	0.043
Ammonia as N	8.3	3.8
Sulfide	0.078	0.035
Total chromium	0.18	0.105
Hexavalent chromium	0.022	0.0072
pH	(2)	(2)

See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any 1 day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 49.9	0.71
50.0 to 74.9	0.74
75.0 to 99.9	0.81
100.0 to 124.9	0.88
125.0 to 149.9	0.97
150.0 to 174.9	1.05
175.0 to 199.9	1.14
200.0 or greater	1.19

(b) Process factor.

Process configuration	Process factor
Less than 6.49	0.81
6.5 to 7.49	0.88
7.5 to 7.99	1.0
8.0 to 8.49	1.09
8.5 to 8.99	1.19
9.0 to 9.49	1.29
9.5 to 9.99	1.41
10.0 to 10.49	1.53
10.5 to 10.99	1.67
11.0 to 11.49	1.82
11.5 to 11.99	1.98
12.0 to 12.49	2.15
12.5 to 12.99	2.34
13.0 or greater	2.44

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- **(3)** The provisions of s. NR 279.16 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

- NR 279.47 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7, any new source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for new sources (PSNS).
- (1) The following standards apply to the total refinery flow contribution to the POTW.

Pollutant or pollutant property	Pretreatment standards for new sources - maximum for any 1 day	
	Milligrams per liter (mg/l)	
Oil and grease	100.0	
Ammonia as N	100.0	

¹Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.46 (1) and (2).

- **(2)** The following standard is applied to the cooling tower discharge part of the total refinery flow to the POTW by multiplying:
 - (a) The standard;
 - (b) By the total refinery flow to the POTW; and
- (c) By the ratio of the cooling tower discharge flow to the total refinery flow.

Pollutant or pollutant property	Pretreatment standards for new sources - maximum for any 1 day
	Milligrams per liter (mg/l)
Total chromium	1.0

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.50 Applicability; description of the integrated subcategory. The provisions of this subcategory are applicable to all discharges resulting from any facility that produces petroleum products by the use of topping, cracking, lube oil manufacturing processes, and petrochemical operations whether or not the facility includes any process in addition to topping, cracking, lube oil manufacturing processes, and petrochemical operations.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.52 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). (1) Except as provided in 40 CFR 125.30-125.32 any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT):

² Within the range of 6.0 to 9.0.

BPT effluent limitations		
Pollutant or pollutant	Maximum for any	Average of daily values
property	1 day	for 30 consecutive days
	Metric units (ki	ilograms per 1,000 m³
	of f	reedstock)
BOD ₅	54.4	28.9
TSS	37.3	23.7
COD^1	388.0	198.0
Oil and grease	17.1	9.1
Phenolic compounds	0.4	0.192
Ammonia as N	23.4	10.6
Sulfide	0.35	0.158
Total chromium	0.82	0.48
Hexavalent chromium	0.068	0.032
pH	(2)	(2)
	English units (pounds	s per 1,000 bbl of feedstock)
BOD ₅	19.2	10.2
TSS	13.2	8.4
COD^1	136.0	70.0

	English units (pounds	per 1,000 bbl of feedstock)
BOD ₅	19.2	10.2
TSS	13.2	8.4
COD^1	136.0	70.0
Oil and grease	6.0	3.2
Phenolic compounds	0.14	0.068
Ammonia as N	8.3	3.8
Sulfide	0.124	0.056
Total chromium	0.29	0.17
Hexavalent chromium	0.025	0.011
pН	(2)	(2)

¹ See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 124.9	0.73
125.0 to 149.9	0.76
150.0 to 174.9	0.83
175.0 to 199.9	0.91
200.0 to 224.9	0.99
225.0 or greater	1.04

(b) Process factor.

Process configuration	Process factor
Less than 6.49	0.75
6.5 to 7.49	0.82
7.5 to 7.99	0.92
8.0 to 8.49	1.0
8.5 to 8.99	1.1
9.0 to 9.49	1.2
9.5 to 9.99	1.3
10.0 to 10.49	1.42
10.5 to 10.99	1.54
11.0 to 11.49	1.68
11.5 to 11.99	1.83
12.0 to 12.49	1.99
12.5 to 12.99	2.17
13.0 or greater	2.26

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- (3) The provisions of s. NR 279.12 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.
- (5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best practicable control technology currently available by a point source subject to this subcategory.
 - (a) If wastewater consists solely of contaminated runoff and is

not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease and 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.

(b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease or 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BPT effluer	nt limitations
	Maximum for any 1	Average of daily
Pollutant or pollutant	day	values for 30
property		consecutive days
	Metric units (kilogra	ms per cubic meter of
	fle	ow)
BOD_5	48.0	26.0
TSS	33.0	21.0
COD^1	360.0	180.0
Oil and grease	15.0	8.0
Phenolic compounds (4AAP)	0.35	0.17
Total chromium	0.73	0.43
Hexavalent chromium	0.062	0.0028
pH	(2)	(2)
	English units (pour	nds per 1,000 gallons
	of flow)	
BOD ₅	0.4	0.22
TSS	0.28	0.18
COD^1	3.0	1.5
Oil and grease	0.13	0.067
Phenolic compounds (4AAP)	0.0029	0.0014
Total chromium	0.006	0.0035
Hexavalent chromium	0.00052	0.00023
pH	(2)	(2)

¹In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1,000 mg/l (1,000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD₅.

² Within the range 6.0 to 9.0.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.53 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) Except as provided in 40 CFR 125.30 - 125.32, any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT):

	BAT effluent limitations	
Pollutant or pollutant	Maximum for any	Average of daily values
property	1 day	for 30 consecutive days
	Metric units (kilograms per 1,000 m ³	
	of f	eedstock)
COD^1	388.0	198.0
Ammonia as N	23.4	10.6
Sulfide	0.35	0.158
	English units (pounds per 1,000 bbl of feedstock)	
COD^1	136.0	70.0
Ammonia as N	8.3	3.8
Sulfide	0.124	0.056

¹ See footnote following table in s. NR 279.13 (4).

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

²Within the range of 6.0 to 9.0.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 124.9	0.73	
125.0 to 149.9	0.76	
150.0 to 174.9	0.83	
175.0 to 199.9	0.91	
200.0 to 224.9	0.99	
225.0 or greater	1.04	

(b) Process factor.

Process configuration	Process factor
Less than 6.49	0.75
6.5 to 7.49	0.82
7.5 to 7.99	0.92
8.0 to 8.49	1.0
8.5 to 8.99	1.1
9.0 to 9.49	1.2
9.5 to 9.99	1.3
10.0 to 10.49	1.42
10.5 to 10.99	1.54
11.0 to 11.49	1.68
11.5 to 11.99	1.83
12.0 to 12.49	1.99
12.5 to 12.99	2.17
13.0 or greater	2.26

Note: See the comprehensive example in s. NR 279.42 (2) (c).

(3) (a) In addition to the provisions contained above pertaining to COD, ammonia and sulfide any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). For each of the regulated pollutant parameters listed below, the effluent limitation for a given refinery is the sum of the products of each effluent limitation factor times the applicable process feedstock rate, calculated as provided in 40 CFR 122.45 (b).

Note: Applicable production processes are presented in Appendix A, by process type. The process identification numbers presented in this Appendix A are for the convenience of the reader. They can be cross-referenced in the Development Document for Effluent Limitations Guidelines, New Source Performance Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category (EPA 440/1-82/014). Table III-7, pp. 49-54.

40 CFR 122.45(b) reads as follows: The calculation of any permit limitations, standards, or prohibitions which are based on production (or other measure of operation) shall be based not upon the designed production capacity but rather upon a reasonable measure of actual production of the facility, such as the production during the high month of the previous year, or the monthly average for the highest of the previous 5 years. For new sources or new dischargers, actual production shall be estimated using projected production. The time period of the measure of production shall correspond to the time period of the calculated permit limitations; for example, monthly production shall be used to calculate average monthly discharge limitations.

	BAT Effluen	t Limitations Factor
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
	,	grams per 1,000 m ³
Phenolic compounds (4AAP):	of fee	edstock)
Crude	0.037	0.009
Cracking and coking	0.419	0.102
Asphalt	0.226	0.055
Lube	1.055	0.257
Reforming and alkylation	0.377	0.092
Total chromium:		
Crude	0.03	0.011
Cracking and coking	0.34	0.118
Asphalt	0.183	0.064
Lube	0.855	0.297
Reforming and alkylation	0.305	0.106
Hexavalent chromium:		
Crude	0.0019	0.0009
Cracking and coking	0.0218	0.0098
Asphalt	0.0117	0.0053
Lube	0.0549	0.0248
Reforming and alkylation	0.0196	0.0088

-	English units (pou of feed	* '
Phenolic compounds (4AAP):		
Crude	0.013	0.003
Cracking and coking	0.147	0.036
Asphalt	0.079	0.019
Lube	0.369	0.09
Reforming and alkylation	0.132	0.032
Total chromium:		
Crude	0.011	0.004
Cracking and coking	0.119	0.041
Asphalt	0.064	0.022
Lube	0.299	0.104
Reforming and alkylation	0.107	0.037
Hexavalent chromium:		
Crude	0.0007	0.0003
Cracking and coking	0.0076	0.0034
Asphalt	0.0041	0.0019
Lube	0.0192	0.0087
Reforming and alkylation	0.0089	0.0031

Note: See the comprehensive example in s. NR 279.43 (3) (b).

- **(4)** The provisions of s. NR 279.13 (4) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (5) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.
- **(6)** The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best available technology economically achievable by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 110 mg/l total organic carbon (TOC) based upon an analysis of any single grab or composite sample.
- (b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 110 mg/l TOC is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BAT efflue	nt limitations
Pollutant or pollutant	Maximum for any	Average of daily
property	1 day	values for 30
	75.1.4.4.4.	consecutive days
		rams per 1,000 cubic
	meter	s of flow
Phenolic compounds (4AAP)	0.35	0.17
Total chromium	0.6	0.21
Hexavalent chromium	0.062	0.028
COD^1	360.0	180.0
	English units (pou	nds per 1,000 gallons
	of	flow)
Phenolic compounds (4AAP)	.0029	.0014
Total chromium	.005	.0018
Hexavalent chromium	.00052	.00023
COD ¹	3.0	1.5

¹ In any case in which the applicant can demonstrate that the chloride ion concentration in the effluent exceeds 1000 mg/l (1000 ppm), the department may substitute TOC as a parameter in lieu of COD. A TOC effluent limitation shall be based on effluent data from the particular refinery which correlates TOC to BOD₅. If in the judgment of the department, adequate correlation data are not available, the effluent limitations for TOC shall be established at a ratio of 2.2 to 1 to the applicable effluent limitations for BOD₅.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.54 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT). (1) Any existing point source subject to this subcategory shall achieve the following effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control technology (BCT):

	BCT Effluent Limitations	
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
1 1 1	Metric units (kilograms per 1,000 m ³	
	of f	eedstock)
BOD_5	54.4	28.9
TSS	37.3	23.7
Oil and grease	17.1	9.1
pН	(1)	(1)
	English units (pounds	s per 1,000 bbl of feedstock)
BOD_5	19.2	10.2
TSS	13.2	8.4
Oil and grease	6.0	3.2
pН	(1)	(1)

Within the range of 6.0 to 9.0.

(2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.

(a) Size factor.

1000 bbl. of feedstock per stream day	Size factor	
Less than 124.9	0.73	
125.0 to 149.9	0.76	
150.0 to 174.9	0.83	
175.0 to 199.9	0.91	
200.0 to 224.9	0.99	
225.0 or greater	1.04	

(b) Process factor.

Process configuration	Process factor
Less than 6.49	0.75
6.5 to 7.49	0.82
7.5 to 7.99	0.92
8.0 to 8.49	1.0
8.5 to 8.99	1.1
9.0 to 9.49	1.2
9.5 to 9.99	1.3
10.0 to 10.49	1.42
10.5 to 10.99	1.54
11.0 to 11.49	1.68
11.5 to 11.99	1.83
12.0 to 12.49	1.99
12.5 to 12.99	2.17
13.0 or greater	2.26

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- **(3)** The provisions of s. NR 279.14 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2).
- (5) The following effluent limitations constitute the quantity and quality of pollutants or pollutant properties controlled by this subsection and attributable to contaminated runoff, which may be discharged after the application of the best conventional pollutant control technology by a point source subject to this subcategory.
- (a) If wastewater consists solely of contaminated runoff and is not commingled or treated with process wastewater, it may be discharged if it does not exceed 15 mg/l oil and grease based upon an analysis of any single grab or composite sample.

(b) If contaminated runoff is commingled or treated with process wastewater, or if wastewater consisting solely of contaminated runoff which exceeds 15 mg/l oil and grease is not commingled or treated with any other type of wastewater, the quantity of pollutants discharged may not exceed the quantity determined by multiplying the flow of contaminated runoff as determined by the department times the concentrations listed in the following table:

	BCT Effluent Limitations	
Pollutant or pollutant	Maximum for any	Average of daily values
property	1 day	for 30 consecutive days
	Metric units (kilogi	rams per 1,000 m³ of flow
BOD ₅	48.0	26.0
TSS	33.0	21.0
Oil and grease	15.0	8.0
pH	(1)	(1)
	English units (pound	s per 1,000 gallons of flow)
BOD_5	0.4	0.22
TSS	0.28	0.18
Oil and grease	0.13	0.067
pН	(1)	(1)

¹Within the range of 6.0 to 9.0.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.55 Pretreatment standards for existing sources (PSES). Except as provided in 40 CFR 403.7 and 403.13 any existing source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for existing sources (PSES). The following standards apply to the total refinery flow contribution to the POTW:

Pollutant or pollutant property	Pretreatment standards for existing sources - maximum for any 1 day
	Milligrams per liter (mg/l)
Oil and grease	100.0
Ammonia	100.0

¹Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.53 (1) and (2).

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.56 Standards of performance for new sources (NSPS). (1) Any new source subject to this subcategory shall achieve the following new source performance standards (NSPS):

	NSPS effluent limitations	
Pollutant or pollutant property	Maximum for any 1 day	Average of daily values for 30 consecutive days
		lograms per 1,000 m ³
		eedstock)
BOD_5	41.6	22.1
TSS	28.1	17.9
COD^1	295.0	152.0
Oil and grease	12.6	6.7
Phenolic compounds	0.3	0.14
Ammonia as N	23.4	10.7
Sulfide	0.26	0.12
Total chromium	0.64	0.37
Hexavalent chromium	0.052	0.024
pH	(2)	(2)
	English units (pounds	per 1,000 bbl of feedstock)
BOD_5	14.7	7.8
TSS	9.9	6.3
COD^1	104.0	54.0
Oil and grease	4.5	2.4
Phenolic compounds	0.105	0.051
Ammonia as N	8.3	3.8
Sulfide	0.093	0.042
Total chromium	0.22	0.13
Hexavalent chromium	0.019	0.0084
pH	(2)	(2)
1See footnote following to	ble in c NP 270 13 (4)	

¹See footnote following table in s. NR 279.13 (4).

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

²Within the range of 6.0 to 9.0.

- (2) The limits set forth in sub. (1) shall be multiplied by the following factors to calculate the maximum for any one day and maximum average of daily values for 30 consecutive days.
 - (a) Size factor.

1000 bbl. of feedstock per stream day	Size factor
Less than 124.9	0.73
125.0 to 149.9	0.76
150.0 to 174.9	0.83
175.0 to 199.9	0.91
200.0 to 224.9	0.99
225.0 or greater	1.04

Process configuration	Process factor
Less than 6.49	0.75
6.5 to 7.49	0.82
7.5 to 7.99	0.92
8.0 to 8.49	1.0
8.5 to 8.99	1.1
9.0 to 9.49	1.2
9.5 to 9.99	1.3
10.0 to 10.49	1.42
10.5 to 10.99	1.54
11.0 to 11.49	1.68
11.5 to 11.99	1.83
12.0 to 12.49	1.99
12.5 to 12.99	2.17
13.0 or greater	2.26

Note: See the comprehensive example in s. NR 279.42 (2) (c).

- (3) The provisions of s. NR 279.16 (3) apply to discharges of process wastewater pollutants attributable to ballast water by a point source subject to the provisions of this subcategory.
- (4) The quantity and quality of pollutants or pollutant properties controlled by this subsection, attributable to once-through cooling water, are excluded from the discharge allowed by sub. (2). Once-through cooling water may be discharged with a total organic carbon concentration not to exceed 5 mg/l.

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.57 Pretreatment standards for new sources (PSNS). Except as provided in 40 CFR 403.7 any existing [new] source subject to this subcategory which introduces pollutants into a publicly owned treatment works shall comply with 40 CFR Part 403 and achieve the following pretreatment standards for new sources (PSNS).

(1) The following standards apply to the total refinery flow contribution to the POTW:

Pollutant or pollutant property	Pretreatment standards for new sources - maximum for any 1 day
	Milligrams per liter (mg/l)
Oil and grease	100.0
Ammonia	100.0

¹ Where the discharge to the POTW consists solely of sour waters, the owner or operator has the option of complying with this limit or the daily maximum mass limitation for ammonia set forth in s. NR 279.53 (1) and (2).

- **(2)** The following standard is applied to the cooling tower discharge part of the total refinery flow to the POTW by multiplying:
 - (a) The standards;
 - (b) By the total refinery flow to the POTW; and
- (c) By the ratio of the cooling tower discharge flow to the total refinery flow.

Milligrams per liter (mg	
Total chromium 1.0	<u>;/1)</u>

History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.

NR 279.60 Cross-reference. The federal citations in this chapter correspond to provisions of the Wisconsin administrative code and Wisconsin statutes. The federal citations may be cross-referenced in the following table:

CODE OF FEDERAL REGULATIONS	CORRESPONDING STATE CODE SECTIONS
40 CFR Part 419	ch. NR 279
40 CFR 125.30-125.32 Stats.	NR 211.14, s. 283.13 (3),
40 CFR Part 401	chs. NR 205, 215, 219
40 CFR Part 403	ch. NR 211
40 CFR 403.7	NR 211.13
40 CFR 403.13	NR 211.14
History: Cr. Register, October, 1986, No. 370, eff. 11-1-86.	

Appendix A

Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP)

Crude Processes:

- 1. Atmospheric Crude Distillation
- 2. Crude Desalting
- 3. Vacuum Crude Distillation

Cracking and Coking Processes:

- 4. Visbreaking
- 5. Thermal Cracking
- 6. Fluid Catalytic Cracking
- 7. Moving Bed Catalytic Cracking
- 10. Hydrocracking
- 15. Delayed Coking
- 16. Fluid Coking
- 54. Hydrotreating

Asphalt Processes:

- 18. Asphalt Production
- 32. 200°F Softening Point Unfluxed Asphalt
- 43. Asphalt Oxidizing
- 89. Asphalt Emulsifying

Lube Processes:

- 21. Hydrofining, Hydrofinishing, Lube Hydrofining
- 22. White Oil Manufacture
- Propane Dewaxing, Propane Deasphalting, Propane Fractioning, Propane Deresining
- Duo Sol, Solvent Treating, Solvent Extraction, Duotreating, Solvent Dewaxing, Solvent Deasphalting
- 25. Lube Vac Twr, Oil Fractionation, Batch Still (Naphtha Strip), Bright Stock Treating
- 26. Centrifuge & Chilling
- 27. MEK Dewaxing, Ketone Dewaxing, MEK-Toluene Dewaxing
- 28. Deoiling (wax)
- 29. Naphthenic Lubes Production
- 30. SO₂ Extraction
- 34. Wax Pressing