Chapter NR 235

ORGANIC CHEMICAL MANUFACTURING

Subchapter I - NR 235.01	General Provisions Purpose.	NR 235.51	Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control tech-
NR 235.02	Applicability.		nology currently available (BPT).
NR 235.03	Definitions.	NR 235.52	Effluent limitations representing the degree of effluent reduction
NR 235.04	Compliance dates.		attainable by the application of the best available technology eco-
Subchanter II	- Rayon Fibers		nomically achievable (BAT).
NR 235.10	Applicability; description of the rayon fibers subcategory.	NR 235.53	New source performance standards (NSPS).
NR 235.11	Effluent limitations representing the degree of effluent reduction	NR 235.54	Pretreatment standards for existing sources (PSES).
1011 200111	attainable by the application of the best practicable control tech-	NR 235.55	Pretreatment standards for new sources (PSNS).
	nology currently available (BPT).	C	III Balls Queenis Chaminals
NR 235.12	Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology eco- nomically achievable (BAT).	NR 235.60	/II - Bulk Organic Chemicals Applicability; description of the bulk organic chemicals subcategory.
NR 235.13	New source performance standards (NSPS).	NR 235.61	Effluent limitations representing the degree of effluent reduction
NR 235.14	Pretreatment standards for existing sources (PSES).		attainable by the application of the best practicable control tech-
NR 235.15	Pretreatment standards for new sources (PSNS).		nology currently available (BPT).
		NR 235.62	Effluent limitations representing the degree of effluent reduction
	I - Other Fibers		attainable by the application of the best available technology eco-
NR 235.20	Applicability; description of the other fibers category.		nomically achievable (BAT).
NR 235.21	Effluent limitations representing the degree of effluent reduction	NR 235.63	New source performance standards (NSPS).
	attainable by the application of the best practicable control tech-	NR 235.64	Pretreatment standards for existing sources (PSES).
NID 005 00	nology currently available (BPT).	NR 235.65	Pretreatment standards for new sources (PSNS).
NR 235.22	Effluent limitations representing the degree of effluent reduction	Subchanter V	/III - Specialty Organic Chemicals
	attainable by the application of the best available technology eco-	NR 235.70	Applicability; description of the specialty organic chemicals
NR 235.23	nomically achievable (BAT). New source performance standards (NSPS).	NR 255.70	subcategory.
NR 235.23 NR 235.24	Pretreatment standards for existing sources (PSES).	NR 235.71	Effluent limitations representing the degree of effluent reduction
NR 235.25	Pretreatment standards for new sources (PSNS).	NR 255.71	attainable by the application of the best practicable control tech-
			nology currently available (BPT).
	7 - Thermoplastic Resins	NR 235.72	Effluent limitations representing the degree of effluent reduction
NR 235.30	Applicability; description of the thermoplastic resins subcategory.	IAR 255.72	attainable by the application of the best available technology eco-
NR 235.31	Effluent limitations representing the degree of effluent reduction		nomically achievable (BAT).
	attainable by the application of the best practicable control tech-	NR 235.73	New source performance standards (NSPS).
NID 005 00	nology currently available (BPT).	NR 235.74	Pretreatment standards for existing sources (PSES).
NR 235.32	Effluent limitations representing the degree of effluent reduction	NR 235.75	Pretreatment standards for new sources (PSNS).
	attainable by the application of the best available technology eco-		
NR 235.33	nomically achievable (BAT). New source performance standards (NSPS).		X - Direct Discharge Point Sources That Use End-Of-Pipe Biolog-
NR 235.33	Pretreatment standards for existing sources (PSES).	ical Treatme	nt
NR 235.34 NR 235.35	Pretreatment standards for new sources (PSIS).	NR 235.80	Applicability; description of the subcategory of direct discharge
			point sources that use end-of-pipe biological treatment.
	- Thermosetting Resins	NR 235.81	Toxic pollutant effluent limitations and standards for direct dis-
NR 235.40	Applicability; description of the thermosetting resins subcategory.		charge point sources that use end-of-pipe biological treatment.
NR 235.41	Effluent limitations representing the degree of effluent reduction	Subchanter M	K - Direct Discharge Point Sources That Do Not Use End-of-Pipe
	attainable by the application of the best practicable control tech-	Biological Tr	
	nology currently available (BPT).	NR 235.90	Applicability; description of the subcategory of direct discharge
NR 235.42	Effluent limitations representing the degree of effluent reduction	NR 255.90	point sources that do not use end-of-pipe biological treatment.
	attainable by the application of the best available technology eco-	NR 235.91	Toxic pollutant effluent limitations and standards for direct dis-
NID 225 42	nomically achievable (BAT).	NR 255.91	charge point sources that do not use end-of-pipe biological
NR 235.43	New source performance standards (NSPS).		treatment.
NR 235.44	Pretreatment standards for existing sources (PSES).		
NR 235.45	Pretreatment standards for new sources (PSNS).		KI - Indirect Discharge Point Sources
	I - Commodity Organic Chemicals	NR 235.98	Applicability; description of the subcategory of indirect discharge
NR 235.50	Applicability; description of the commodity organic chemicals		point sources.
	subcategory.	NR 235.99	Toxic pollutant standards for indirect discharge point sources.

Note: Chapter NR 235 as it existed on March 31, 1997, was repealed and a new chapter NR 235 was created, Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter I - General Provisions

NR 235.01 Purpose. The purpose of this chapter is to establish effluent limitations, performance standards and pretreatment standards for discharges of process wastes from the organic chemicals, plastics and synthetic fibers point source category and its subcategories.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.02 Applicability. (1) This chapter applies to process wastewater discharges from all facilities or portions of facilities that manufacture the organic chemicals, plastics and synthetic fibers (OCPSF) products or product groups covered by subchs. II to VIII and are included within the following U.S. department of commerce bureau of the census standard industrial classification (SIC) groups:

(a) SIC 2821 - Plastic materials, synthetic resins and nonvulcanizable elastomers.

(b) SIC 2823 - Cellulosic man-made fibers.

(c) SIC 2824 - Synthetic organic fibers, except cellulosic.

(d) SIC 2865 - Cyclic crudes and intermediates, dyes and organic pigments.

(e) SIC 2869 - Industrial organic chemicals, not elsewhere classified.

(2) This chapter applies to wastewater discharges from OCPSF research and development, pilot plant, technical service and laboratory bench scale operations if these operations are conducted in conjunction with and related to existing OCPSF manufacturing activities at the facility site.

(3) This chapter does not apply to discharges resulting from the manufacture of OCPSF products included in the following SIC subgroups, if a facility has reported under the following subgroups rather than under the SIC groups listed in sub. (1):

(a) SIC 2843085 - bulk surface active agents.

(b) SIC 28914 - synthetic resin and rubber adhesives.

(c) Chemicals and chemical preparations, not elsewhere classified:

1. SIC 2899568 - sizes, all types.

2. SIC 2899597 - other industrial chemical specialties, including fluxes, plastic wood preparations and embalming fluids.

(d) SIC 2911058 - aromatic hydrocarbons manufactured from purchased refinery products.

(e) SIC 2911632 - aliphatic hydrocarbons manufactured from purchased refinery products.

(4) This chapter does not apply to discharges for which a different set of previously promulgated effluent limitations guidelines and standards apply, unless the facility reports OCPSF products under SIC codes 2821, 2865 or 2869, and the facility's OCPSF wastewaters are treated in a separate treatment system or discharged separately to a POTW.

(5) This chapter does not apply to any process wastewater discharges from the manufacture of organic chemical compounds solely by extraction from plant and animal raw materials or by fermentation processes.

(6) This chapter does not apply to wastewater discharges of chromium, copper, lead, nickel or zinc in complexed metal-bearing waste streams listed as follows:

(a) Chromium:

Acid dyes

Azo acid dyes, including metallized azo acid dyes

Azo dye intermediates from substituted diazonium salts + coupling compounds

Metallized azo dyes from azo dye + metal acetate Organic pigments, miscellaneous lakes and toners Vat dyes

(b) Copper:

Acid dyes

Metallized azo dyes from azo dye + metal acetate Direct dyes Azo direct dyes Disperse dyes

Disperse dye coupler from N-substitution of

2-amino-4-acetamidoanisole

Azo and vat disperse dyes

Organic pigments

Organic pigment green 7 from copper phthalocyanine Organic pigments from phthalocyanine pigments

Organic pigments from copper phthalocyanine (blue crude)

Organic pigments, miscellaneous lakes and toners Sulfur dyes Vat dyes (c) Lead:

Organic pigments, quinacridines

Organic pigments, thioindigoids

Tetraethyl lead from alkyl halide + sodium-lead alloy Tetramethyl lead from alkyl halide + sodium-lead alloy

(d) Nickel:

Metallized azo dyes from azo dye + metal acetate (e) Zinc:

Organic pigments from azo pigments by diazotization and coupling

(7) This chapter does not apply to discharges of cyanide in cyanide bearing waste streams listed in Appendix A if the department or control authority does the following:

(a) Determines that the cyanide limitations and standards are not achievable due to elevated levels of non-amenable cyanide that is not oxidized by chlorine treatment, that result from the unavoidable complexing of cyanide at the process source of the cyanide-bearing waste stream.

(b) Establishes an alternative total cyanide or amenable cyanide limitation that reflects the best available technology economically achievable.

(c) Bases the determination under par. (a) upon a review of relevant engineering, production and sampling and analysis information, including measurements of both total and amenable cyanide in the waste stream.

(d) Analyzes the extent of complexing in the waste stream, based on the foregoing information, and its impact of cyanide treatability in writing and, for direct dischargers, contained in the fact sheet required by 40 CFR 124.8.

(8) Discharge limitations for chromium, copper, lead, nickel and zinc or discharge standards for lead and zinc may be established for waste streams not listed in Appendix A and not otherwise determined to be metal-bearing waste streams if the department or control authority determines that the wastewater metals contamination is due to background levels that are not reasonably avoidable from sources such as intake water, corrosion of construction materials or contamination of raw materials. The determination shall be based upon a review of relevant facility operating conditions, process chemistry, engineering and sampling and analysis information. An analysis of the sources and levels of the metals, based on the foregoing information, shall be in writing as follows:

(a) For direct dischargers:

1. The analysis shall be contained in the fact sheet required by 40 CFR 124.8.

2. The department may establish limitations for chromium, copper, lead, nickel and zinc for non-metal-bearing waste streams between the lowest level which the permit writer determines based on professional judgment can be reliably measured and the concentrations of the metals present in the waste streams, but not to exceed the applicable limitations contained in ss. NR 235.81 and 235.91.

3. The applicable limitations for zinc which may not be exceeded are those appearing in the tables in ss. NR 235.81 and 235.91, not the alternative limitations listed in footnote 2 to each of these tables.

(b) For indirect dischargers:

1. The control authority may establish standards for lead and zinc for non-"metal-bearing waste streams" between the lowest level which the control authority determines based on best professional judgment can be reliably measured and the concentra-

tion of the metals present in the waste streams, but not to exceed the applicable standards contained in s. NR 235.99.

2. The applicable standards for zinc which may not be exceeded are those appearing in the table in s. NR 235.99 and not the alternative standards in footnote 2 to this table.

(c) The limitations and standards for individual dischargers shall be set on a mass basis by multiplying the concentration allowance established by the department or control authority by the process wastewater flow from the individual waste streams for which incidental metals have been found to be present.

(9) Any existing or new source direct discharge point source subject to 2 or more of subchs. II through VIII shall achieve BOD_5 and TSS discharges not exceeding the quantity or mass determined by multiplying the total OCPSF process wastewater flow subject to subchs. II to VIII times the following OCPSF production-proportioned concentration: For a specific facility, w_x is the proportion of the facility's total OCPSF production in subcategory X. Then the facility-specific production-proportioned concentration limitations are given by:

Plant BOD₅ Limit =
$$\sum_{X=II}^{VIII}$$
 (w_x) (BOD₅ Limit_x)

and

Plant TSS Limit =
$$\sum_{X=II}^{VIII} (w_x) (TSS \text{ Limit}_x)$$

The "BOD₅ Limit_x" and "TSS Limit_x" are the respective subcategorical BOD₅ and the TSS maximum for any one day or maximum for monthly average limitations.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.03 Definitions. In addition to the definitions in ss. NR 205.03, 205.04 and 211.03, the following definitions apply to the terms used in this chapter:

(1) "Direct discharge" means the introduction of pollutants into waters of the state.

(2) "Existing source" means any point source, except a new source as defined in sub. (4), from which pollutants are or may be discharged either to waters of the state or into a publicly owned treatment works.

(3) "Indirect discharge" means the introduction of pollutants into a publicly owned treatment works.

(4) "New source" means any point source for which the commencement of construction occurred after March 21, 1983, and from which pollutants are or may be discharged either to waters of the state or into a publicly owned treatment works.

(5) "OCPSF" means organic chemicals, plastics and synthetic fibers.

(6) "Priority pollutants" means the toxic pollutants listed in s. NR 215.03.

(7) "SIC" means U.S. department of commerce bureau of the census standard industrial classification.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.04 Compliance dates. (1) Any existing source subject to this chapter which discharges to waters of the state shall achieve:

(a) The effluent limitations representing BPT by July 1, 1977; and

(b) The effluent limitations representing BAT by July 1, 1984.

(2) Any new source subject to this chapter which discharges to waters of the state shall achieve NSPS at the commencement of discharge.

(3) Any existing source subject to this chapter which introduces process wastewater pollutants into a POTW shall achieve PSES by the date for each parameter as listed in the following tables:

November 5, 1990		
Benzene	Hexachloroethane	
Carbon tetrachloride	Methyl chloride	
Chlorobenzene	Methylene chloride	
Chloroethane	Naphthalene	
Chloroform	Nitrobenzene	
1,2-Dichlorobenzene	2-Nitrophenol	
1,3-Dichlorobenzene	4-Nitrophenol	
1,4-Dichlorobenzene	Pyrene	
1,1-Dichloroethane	Tetrachloroethylene	
1,2-Dichloroethane	Toluene	
1,1-Dichlorotheylene	Total Cyanide	
1,2-trans-Dichloroethylene	Total Lead	
1,2-Dichloropropane	Total Zinc	
1,3-Dichloropropylene	1,2,4-Trichlorobenzene	
4,6-Dinitro-o-cresol	1,1,1-Trichloroethane	
Ethylbenzene	1,1,2-Trichloroethane	
Hexachlorobenzene	Trichloroethylene	
Hexachlorobutadiene	Vinyl Chloride	

July 23, 1996		
Acenaphthene	Fluoranthene	
Anthracene	Fluorene	
Bis(2-ethylhexyl) phthalate	Naphthalene	
Di-N-butyl phthalate	Phenanthrene	
Diethyl phthalate	Pyrene	

Dimethyl phthalate

(4) Any new source subject to this chapter which introduces process wastewater pollutants into a POTW shall achieve PSNS at the commencement of discharge.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter II - Rayon Fibers

NR 235.10 Applicability; description of the rayon fibers subcategory. This subchapter applies to process wastewater discharges resulting from the manufacture of rayon fiber by the viscose process only.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.11 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this subchapter shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Power Eiber by the Viscose Process

Rayon Fiber by the viscose Process			
BPT Effluent Limitations			
Maximum for Maximum for any 1 day monthly average			
Pollutant or pollutant property	mg/1	mg/1	
BOD ₅	64	24	
TSS	130	40	

(2) The pH shall be within the range of 6.0 to 9.0 at all times. **History:** Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.12 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.13 New source performance standards (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.11 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.11 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times. **History:** Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.14 Pretreatment standards for existing sources (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.15 Pretreatment standards for new sources (PSNS). Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter III - Other Fibers

NR 235.20 Applicability; description of the other fibers category. This subchapter applies to the process wastewater discharges resulting from the manufacture of products classified under SIC 2823 cellulosic man-made fibers, except rayon, and SIC 2824 synthetic organic fibers including the following fibers and fiber groups. Product groups are indicated with an asterisk.

*Acrylic fibers (85% polyacrylonitrile) *Cellulose acetate fibers *Fluorocarbon (Teflon) fibers *Modacrylic fibers *Nylon 6 fibers Nylon 6 monofilament *Nylon 66 fibers Nylon 66 monofilament *Polyamide fibers (Quiana) *Polyaramid (Kevlar) resin-fibers *Polyaramid (Nomex) resin-fibers *Polyester fibers *Polyethylene fibers *Polypropylene fibers *Polyurethane fibers (Spandex) History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.21 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Other Fibers			
BPT Effluent Limitations			
	Maximum for any 1 day	Maximum for monthly average	
Pollutant or pollutant property	mg/1	mg/1	
BOD ₅	48	18	
TSS	115	36	

(2) The pH shall be within the range of 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.22 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.23 New source performance standards (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.21 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.21 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.24 Pretreatment standards for existing sources (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.25 Pretreatment standards for new sources (PSNS). Except as provided in s. NR 211.13, any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter IV - Thermoplastic Resins

NR 235.30 Applicability; description of the thermoplastic resins subcategory. This subchapter applies to the process wastewater discharges resulting from the manufacture of products classified under SIC 28213 thermoplastic resins including the following resins and resin groups. Product groups are indicated with an asterisk. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Thermoplastic Resins

*Abietic Acid and derivatives	*Polyethylene polyvinyl acetate copolymers
*ABS resins	HDPE polyethylene resin
*ABS-SAN resins	LDPE polyethylene resin
*Acrylate-methacrylate latexes	Scrap polyethylene resin
*Acrylic latex	Low MW polyethylene resin, wax
*Acrylic resins	Latex polyethylene resin
*Cellulose acetate butyrates	Polyethylene resins
Cellulose acetate resin	*Polyethylene resins, compounded
*Cellulose acetates	*Polyethylene chlorinated
*Cellulose acetate propionates Cellulose nitrate	*Polyimides
	*Polypropylene resins
*Ethylene-methacrylic acid copolymers	Crystal polystyrene
*Ethylene-vinyl acetate copolymers	Modified crystal polystyrene
*Fatty acid resins	*Polystyrene copolymers
*Fluorocarbon polymers	*Polystyrene acrylic latexes
Nylon 11 resin	Polystyrene impact resins
*Nylon 6 to 66 copolymers	Polystyrene latex
*Nylon 6 to nylon 11 blends	Polystyrene expandable
Nylon 6 resin	Polystyrene expanded
Nylon 612 resin	*Polysulfone resins
Nylon 66 resin	Polyvinyl acetate
*Nylons	*Polyvinyl acetate-PVC copolymers
*Petroleum hydrocarbon resins	*Polyvinyl acetate copolymers
*Polyvinyl pyrrolidone copolymers	*Polyvinyl acetate resins
*Poly(alpha)olefins	Polyvinyl alcohol resin
Polyacrylic acid	Polyvinyl chloride
*Polyamides	Chlorinated polyvinyl chloride
*Polyarylamides	*Polyvinyl ether-maleic anhydride
*Polybutadiene	*Polyvinyl formal resins
*Polybutenes	*Polyvinylacetate-methacrylic copolymers
Polybutenyl succinic anhydride	*Polyvinylacetate acrylic copolymers
*Polycarbonates	*Polyvinylacetate-2- ethylhexylacrylate copolymers
*Polyester resins	Polyvinylidene chloride
*Polyester resins, polybutylene terephthalate	*Polyvinylidene chloride copolymers
*Polyester resins, polyoxybenzoate	*Polyvinylidene-vinyl chloride resins
Polyethylene	*PVC copolymers, latex acrylates
*Polyethylene-ethyl acrylate resins	*PVC copolymers, ethylene vinyl chloride

*Rosin derivative resins *Rosin modified resins *Rosin resins *SAN resins *Silicone resins *Silicone rubbers *Styrene maleic anhydride resins Styrene polymeric residue *Styrene acrylic copolymer resins *Styrene-acrylonitrile-acrylates copolymers *Styrene-butadiene resins *Stryrene butadiene resins, less than 50% butadiene *Styrene butadiene resins, latex *Styrene-divinyl benzene resins (ion exchange) *Styrene-methacrylate terpolymer resins *Styrene-methyl methacrylate copolymers *Styrene, butadiene, vinyl toluene terpolymers *Sulfonated styrene maleic anhydride resins *Unsaturated polyester resins *Vinyl toluene resins *Vinyl toluene-acrylate resins *Vinyl toluene butadiene resins *Vinyl toluene-methacrylate resins *Vinylacetate-N-butylacrylate copolymers

NR 235.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Thermoplastic Resins			
BPT Effluent Limitations			
	Maximum for	Maximum for	
any 1 day monthly average			
Pollutant or pollutant	mg/1	mg/1	
property			
BOD ₅	64	24	
TSS 130 40			

(2) The pH shall be within the range of 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.32 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.33 New source performance standards (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.31 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.31 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times. **History:** Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.34 Pretreatment standards for existing sources (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.35 **Pretreatment standards for new sources (PSNS).** Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter V - Thermosetting Resins

NR 235.40 Applicability; description of the thermosetting resins subcategory. This subchapter applies to process wastewater discharges resulting from the manufacture of the products classified under SIC 28214 thermosetting resins including the following resins and resin groups. Product groups are indicated with an asterisk.

*Alkyd resins

Dicyanodiamide resin

*Epoxy resins

*Fumaric acid polyesters

*Furan resins

Glyoxal-urea formaldehyde textile resins

*Ketone-formaldehyde resins

*Melamine resins

*Phenolic resins

*Polyacetal resins

Polyacrylamide

*Polyurethane prepolymers

*Polyurethane resins

*Urea formaldehyde resins

*Urea resins

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations: (1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Thermosetting Resins			
BPT Effluent Limitations			
	Maximum for	Maximum for	
any 1 day monthly average			
Pollutant or pollutant	mg/1	mg/1	
property			
BOD ₅	163	61	
TSS	216	67	

(2) The pH shall be within the range of 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.42 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.43 New source performance standards (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.41 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.41 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times. **History:** Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.44 Pretreatment standards for existing sources (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.45 Pretreatment standards for new sources (PSNS). Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter VI - Commodity Organic Chemicals

NR 235.50 Applicability; description of the commodity organic chemicals subcategory. This subchapter applies to the process wastewater discharges resulting from the manufacture of the following SIC 2865 and 2869 commodity organic chemicals and commodity organic chemical groups. Product groups are indicated with an asterisk.

Commodity Organic Chemicals		
Aliphatic Organic Chemicals	1,2-Dichloroethane	
Acetaldehyde	1,3-Butadiene	
Acetic acid	Aromatic Organic Chemicals	
Acetic anhydride	Benzene	
Acetone	Cumene	
Acrylonitrile	Dimethyl terephthalate	
Adipic acid	Ethylbenzene	
*Butylenes (butenes)	Phenol	
Cyclohexane	*Pitch tar residues	
Ethanol	*Pyrolysis gasolines	
Ethylene	Styrene	
Ethylene glycol	Terephthalic acid	
Ethylene oxide	Toluene	
Formaldehyde	*Xylenes, mixed	
Isopropanol	o-Xylene	
Methanol	m-Xylene (impure)	
Polyoxypropylene glycol	p-Xylene	
Propylene	Halogenated Organic Chemicals	
Propylene oxide	Vinyl chloride	
Vinyl acetate	-	

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.51 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Commodity Organic Chemicals			
BPT Effluent Limitations			
Maximum for Maximum for any 1 day monthly average			
Pollutant or pollutant property	mg/1	mg/1	
BOD ₅	80	30	
TSS	149	46	

(2) The pH shall be within the range of 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.52 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.53 New source performance standards (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.51 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.51 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.54 Pretreatment standards for existing sources (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.55 Pretreatment standards for new sources (PSNS). Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter VII - Bulk Organic Chemicals

NR 235.60 Applicability; description of the bulk organic chemicals subcategory. This subchapter applies to the process wastewater discharges resulting from the manufacture of the following SIC 2865 and 2869 bulk organic chemicals and bulk organic chemical groups. Product groups are indicated with an asterisk.

. .

• •

Bulk Organic Chemicals		
	(1) Aliphatic Organic Chemicals	
*Acetic acid esters	Isophthalic acid	
*Acetic acid salts	Isoprene	
Acetone cyanohydrin	Isopropyl acetate	
Acetylene	Ligninsulfonic acid, calcium salt	
Acrylic acid	Maleic anhydride	
*Acrylic acid esters	Methacrylic acid	
*Alkoxy alkanols	*Methacrylic acid esters	
*Alkylates	Methane	
*Alpha-olefins	Methyl ethyl ketone	
Butane (all forms)	Methyl methacrylate	
*C-4 Unsaturated hydrocarbons	Methyl tert-butyl ether	
Calcium stearate	Methylisobutyl ketone	
Caprolactam	*n-Alkanes	
Carboxymethyl cellulose	n-Butyl alcohol	
Cellulose acetate butyrates	n-Butylacetate	
*Cellulose ethers	n-Butyraldehyde	
Cumene hydroperoxide	n-Butyric acid	
Cyclohexanol	n-Butyric anhydride	
Cyclohexanol, cyclohexanone mixed	*n-Paraffins	
Cyclohexanone	n-Propyl acetate	
Cyclohexene	n-Propyl alcohol	
*C12-C18 Primary alcohols	Nitrilotriacetic acid	
*C5 concentrates	Nylon salt	
*C9 concentrates	Oxalic acid	
Decanol	*Oxo aldehydes-alcohols	
Diacetone alcohol	Pentaerythritol	
*Dicarboxylic acids salts	Pentane	
Diethyl ether	*Pentenes	
Diethylene glycol	*Petroleum sulfonates	
Diethylene glycol diethyl ether	Pine oil	
Diethylene glycol dimethyl ether	Polyoxybutylene glycol	
Diethylene glycol monoethyl ether	Polyoxyethylene glycol	
Diethylene glycol monomethyl ether	Propane	

*Dimer acids	Propionaldehyde
Dioxane	Propionic acid
Ethane	Propylene glycol
Ethylene glycol monophenyl ether	Sec-butyl alcohol
*Miscellaneous ethoxylates	Sodium formate
Ethylene glycol dimethyl ether	Sorbitol
Ethylene glycol monobutyl ether	Stearic acid, calcium salt (wax)
Ethylene glycol monoethyl ether	Tert-Butyl alcohol
Ethylene glycol monomethyl ether	1-Butene
Synthetic glycerine	1-Pentene
Glyoxal	1,4-Butanediol
Hexane	Isobutyl acetate
*Hexanes and other C6 hydrocarbons	2-Butene (cis and trans)
Isobutanol	2-Ethyl hexanol
Isobutylene	2-Ethylbutyraldehyde
Isobutyraldehyde	2,2,4-Trimethyl-1,3-pentanediol
Isophorone	

(2) Amine and Amide Organic Chemicals

2,4-Diaminotoluene	*Methylamines
*Alkyl amines	Methylene dianiline
Aniline	n-Butylamine
Caprolactam, aqueous concentrate	N,N-Diethylaniline
Diethanolamine	N,N-Dimethylformamide
Diphenyl amine	*Nitroanilines
*Ethanolamines	Polymeric methylene dianiline
Ethylamine	Sec-Butylamine
Ethylenediamine	Tert-Butylamine
Ethylenediaminetetraacetic acid	Toluenediamine (mixture)
*Fatty amines	*Toluidines
Hexamethylene diamine	o-Phenylenediamine
Isopropylamine	2,6-Dimethylaniline
m-Toluidine	4-(N-Hydroxyethylethylamino)-2-hydroxyethyl aniline
Melamin	4,4'-Methylenebis (N,N'-dimethyl)-aniline
Melamine crystal	4,4'-Methylenedianiline

(3) Aromatic Organic Chemicals

Alpha-methylstyrene	Dimethyl phthalate
*Alkyl benzenes	Dinitrotoluene (mixed)
*Alkyl phenols	Ditridecyl phthalate
*Alkylbenzene sulfonic acids, salts	m-Cresol
*Aminobenzoic acid (meta and para)	Metanilic acid
Beta-Naphthalene sulfonic acid	Methylenediphenyldiisocyanate
Benzenedisulfonic acid	Naphthalene
Benzoic acid	*Naphthas, solvent
Bis(2-ethylhexyl)phthalate	Nitrobenzene
Bisphenol A	Nitrotoluene
BTX-benzene, toluene, xylene (mixed)	Nonylphenol
Butyl octyl phthalate	p-Cresol
Coal tar	Phthalic acid
*Coal tar products (misc.)	Phthalic anhydride
Creosote	*Tars-pitches
*Cresols, mixed	Tert-Butylphenol
Cyanuric acid	*Toluene diisocyanates (mixture)
Cyclic aromatic sulfonates	Trimellitic acid
Dibutyl phthalate	o-Cresol

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

-

Diisobutyl phthalate	1-Tetralol, 1-tetralone mix
Diisodecyl phthalate	2,4-Dinitrotoluene
Diisooctyl phthalate	2,6-Dinitrotoluene
(4	Halogenated Organic Chemicals
1,4-Phenylenediamine dihydrochloride	Dichloropropane
Allyl chloride	Epichlorohydrin
Benzyl chloride	Ethyl chloride
Carbon tetrachloride	*Fluorocarbons (Freons)
*Chlorinated paraffins, 35-64 PCT, Chlorine	Methyl chloride
Chlorobenzene	Methylene chloride
*Chlorobenzenes (mixed)	Pentachlorophenol
Chlorodifluoroethane	Phosgene
Chloroform	Tetrachloroethylene
*Chloromethanes	Trichloroethylene
2-Chloro-5-methylphenol (6-chloro-m-cresol)	Trichlorofluoromethane
*Chlorophenols	Vinylidene chloride
Chloroprene	1,1-Dichloroethane
Cyanogen chloride	1,1,1-Trichloroethane
Cyanuric chloride	2,4-Dichlorophenol
	(5) Other Organic Chemicals
Adiponitrile	*Phosphate esters
Carbon disulfide	Tetraethyl lead
Fatty Nitriles	Tetramethyl lead
*Organo-tin compounds	Urethane prepolymers

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.61 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Bulk Organic Chemicals			
BPT Effluent Limitations			
Maximum for Maximum for			
any 1 day monthly average			
Pollutant or pollutant	mg/1	mg/1	
property			
BOD ₅	92	34	
TSS	159	49	

(2) The pH level shall be within the range of 6.0 to 9.0 at all times.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.62 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.63 New source performance standards (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.61 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.61 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.64 Pretreatment standards for existing sources (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.65 Pretreatment standards for new sources (PSNS). Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into

a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter VIII - Specialty Organic Chemicals

NR 235.70 Applicability; description of the specialty organic chemicals subcategory. This subchapter applies to the process wastewater discharges resulting from the manufacture of all SIC 2865 and 2869 organic chemicals and organic chemical groups which are not defined as commodity chemicals in s. NR 235.50 or bulk organic chemicals in s. NR 235.60

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.71 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 to 125.32, and in s. NR 235.02 (9) for point sources with production in 2 or more subcategories, any existing point source subject to this section shall achieve the following limitations:

(1) Limitations shall be calculated by multiplying the following concentrations by the manufacturing process wastewater flow:

Specialty Organic Chemicals				
BPT E	BPT Effluent Limitations			
Maximum for Maximum for				
	any 1 day monthly average			
Pollutant or pollutant	mg/1	mg/1		
property				
BOD ₅	120	45		
TSS	183	57		

(2) The pH shall be within the range of 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.72 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). (1) For existing point sources whose total OCPSF production defined by s. NR 235.02 is less than or equal to 5 million pounds of OCPSF products per year, the BAT level of treatment shall be the same as the BPT level of treatment.

(2) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that uses end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.81.

(3) Except as provided in sub. (1) and in 40 CFR 125.30 to 125.32, any existing point source that does not use end-of-pipe biological treatment and is subject to this subchapter shall achieve discharges in accordance with s. NR 235.91.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.73 New source performance standards (NSPS). (1) Any new source that uses end-of-pipe biological treatment and is subject to this subchapter:

(a) Shall achieve discharges in accordance with s. NR 235.81.

(b) May not exceed the BPT effluent limitations listed in the table in s. NR 235.71 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times.

(2) Any new source that does not use end-of-pipe biological treatment and is subject to this section:

(a) Shall achieve discharges in accordance with s. NR 235.91.

(b) May not exceed BPT effluent limitations listed in the table in s. NR 235.71 (1); and

(c) Shall maintain the pH within 6.0 to 9.0 at all times. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.74 Pretreatment standards for existing sources (PSES). Except as provided in ss. NR 211.13 and 211.14, any existing source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.75 Pretreatment standards for new sources (PSNS). Except as provided in s. NR 211.13 any new source subject to this subchapter which introduces pollutants into a POTW shall comply with ch. NR 211 and achieve discharges in accordance with s. NR 235.99.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter IX - Direct Discharge Point Sources That **Use End-Of-Pipe Biological Treatment**

NR 235.80 Applicability; description of the subcategory of direct discharge point sources that use endof-pipe biological treatment. This subchapter applies to the process wastewater discharges resulting from the manufacture of the OCPSF products and products groups defined by s. NR 235.02 from any point source that uses end-of-pipe biological treatment or installs end-of-pipe biological treatment to comply with BPT effluent limitations.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.81 Toxic pollutant effluent limitations and standards for direct discharge point sources that use end-of-pipe biological treatment. (1) Any point source subject to this subchapter must achieve discharges not exceeding the quantity determined by multiplying the process wastewater flow times the concentrations in the following table.

(2) For chromium, copper, lead, nickel, zinc and total cyanide:

(a) The discharge quantity shall be determined by multiplying the concentrations listed in the following table for these pollutants times the flow from the metal-bearing waste streams for the metals and times the flow from the cyanide bearing waste streams for total cyanide.

(b) The metal-bearing waste streams and cyanide-bearing waste streams are defined as:

1. Those waste streams listed in Appendix A.

2. Any additional OCPSF process wastewater streams identified by the permitting authority on a case-by-case basis as metal or cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants identified above.

(c) Any streams designated under par. (b) 2. shall be treated independently of other metal or cyanide bearing waste streams unless the permitting authority determines that the combination of such streams, prior to treatment, with the Appendix A waste streams will result in substantial reduction of these pollutants. This determination shall be based upon a review of relevant engineering, production and sampling information.

BAT Effluent Lin	nitations and NSP	S ¹
	Maximum for	Maximum
	any 1 day	for monthly
		average
Pollutant or pollutant	µg/l	µg/l
property	10	10
Acenaphthene	59	22
Acenaphthylene	59	22
Acrylonitrile	242	96
Anthracene	59	22
Benzene	136	37
Benzo(a)anthracene	59	22
3,4-Benzofluoranthene	61	23
Benzo(k)fluoranthene	59	22
Benzo(a)pyrene	61	23
Bis(2-ethylhexyl)phthalate	279	103
Carbon tetrachloride	38	18
Chlorobenzene	28	15
Chloroethane	268	104
Chloroform	46	21
2-Chlorophenol	98	31
Chrysene	59	22
Di-n-butyl phthalate	57	27
1,2-Dichlorobenzene	163	27 77
1,3-Dichlorobenzene	44	31
1,4-Dichlorobenzene	28	15
1,1-Dichloroethane	20 59	22
1,2-Dichloroethane	211	68
1,1-Dichloroethylene	25	16
1,2-trans-Dichloroethylene	23 54	21
2,4-Dichlorophenol	112	39
	230	153
1,2-Dichloropropane	230 44	29
1,3-Dichloropropylene	203	29 81
Diethyl phthalate		
2,4-Dimethylphenol	36	18
Dimethyl phthalate	47	19
4,6-Dinitro-o-cresol	277	78
2,4-Dinitrophenol	123	71
2,4-Dinitrotoluene	285	113
2,6-Dinitrotoluene	641	255
Ethylbenzene	108	32
Fluoranthene	68	25
Fluorene	59	22
Hexachlorobenzene	28	15
Hexachlorobutadiene	49	20
Hexachloroethane	54	21
Methyl chloride	190	86
Methylene chloride	89	40
Naphthalene	59	22
Nitrobenzene	68	27
2-Nitrophenol	69	41
4-Nitrophenol	124	72
Phenanthrene	59	22
Phenol	26	15

Pollutant or pollutant property	µg/l	µg/l
Pyrene	67	25
Tetrachloroethylene	56	22
Toluene	80	26
Total Chromium	2,770	1,110
Total Copper	3,380	1,450
Total Cyanide	1,200	420
Total Lead	690	320
Total Nickel	3,980	1,690
Total Zinc ²	2,610	1,050
1,2,4-Trichlorobenzene	140	68
1,1,1-Trichloroethane	54	21
1,1,2-Trichloroethane	54	21
Trichloroethylene	54	21
Vinyl Chloride	268	104

¹All units are micrograms per liter.

²Total zinc for rayon fiber manufacture that uses the viscose process and acrylic fiber manufacture that uses the zinc chloride/solvent process is 6,796 µg/l maximum for any one day and $3,325 \,\mu g/l$ maximum for monthly average. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter X - Direct Discharge Point Sources That **Do Not Use End-of-Pipe Biological Treatment**

NR 235.90 Applicability; description of the subcategory of direct discharge point sources that do not use end-of-pipe biological treatment. This subchapter applies to the process wastewater discharges resulting from the manufacture of the OCPSF products and product groups defined by s. NR 235.02 from any point source that does not use end-of-pipe biological treatment and does not install end-of-pipe biological treatment to comply with BPT effluent limitations.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.91 Toxic pollutant effluent limitations and standards for direct discharge point sources that do not use end-of-pipe biological treatment. (1) Any point source subject to this subchapter must achieve discharges not exceeding the quantity determined by multiplying the process wastewater flow times the concentrations in the following table.

(2) For chromium, copper, lead, nickel, zinc and total cyanide:

(a) The discharge quantity shall be determined by multiplying the concentrations listed in the following table for these pollutants times the flow from the metal-bearing waste streams for the metals and times the flow from the cyanide bearing waste streams for total cyanide.

(b) The metal-bearing waste streams and cyanide-bearing waste streams are defined as:

1. Those waste streams listed in Appendix A.

2. Any additional OCPSF process wastewater streams identified by the permitting authority on a case-by-case basis as metal or cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants identified above.

(c) Any streams designated under par. (b) 2. shall be treated independently of other metal or cyanide bearing waste streams unless the permitting authority determines that the combination of such streams, prior to treatment, with the Appendix A waste streams will result in substantial reduction of these pollutants. This determination shall be based upon a review of relevant engineering, production and sampling information.

Sources Not Using End of Pipe Biological Treatment

BAT Effluent Limitations and NSPS ¹		
	Maximum	Maximum
	for any 1 day	for monthly
		average
Pollutant or pollutant	µg/l	μg/l
property	17	10
Acenaphthene	47	19
Acenaphthylene	47	19
Acrylonitrile	232	94
Anthracene	47	19
Benzene	134	57
Benzo(a)anthracene	47	19
3,4-Benzofluoranthene	48	20
Benzo(k)fluoranthene	47	19
Benzo(a)pyrene	48	20
Bis(2-ethylhexyl)phthalate	258	95
Carbon tetrachloride	380	142
Chlorobenzene	380	142
Chloroethane	295	110
Chloroform	325	111
Chrysene	47	19
Di-n-butyl phthalate	43	20
1,2-Dichlorobenzene	794	196
1,3-Dichlorobenzene	380	142
1,4-Dichlorobenzene	380	142
1,1-Dichloroethane	59	22
1,2-Dichloroethane	574	180
1,1-Dichloroethylene	60	22
1,2-trans-Dichloroethylene	66	25
1,2-Dichloropropane	794	196
1,3-Dichloropropylene	794	196
Diethyl phthalate	113	46
2,4-Dimethylphenol	47	19
Dimethyl phthalate	47	19
4,6-Dinitro-o-cresol	277	78
2,4-Dinitrophenol	4,291	1,207
Ethylbenzene	380	142
Fluoranthene	54	22
Fluorene	47	19
Hexachlorobenzene	794	196
Hexachlorobutadiene	380	142
Hexachloroethane	794	196
Methyl chloride	295	110
Methylene chloride	170	36
Naphthalene	47	19
Nitrobenzene	6,402	2,237
2-Nitrophenol	231	65
4-Nitrophenol	576	162
Phenanthrene	47	19
Phenol	47	19
	17	

µg/l	µg/l
48	20
164	52
74	28
2,770	1,110
3,380	1,450
1,200	420
690	320
3,980	1,690
2,610	1,050
794	196
59	22
127	32
69	26
172	97
	48 164 74 2,770 3,380 1,200 690 3,980 2,610 794 59 127 69

¹All units are micrograms per liter.

²Total Zinc for rayon fiber manufacture that uses the viscose process and acrylic fibers manufacture that uses the zinc chloride/solvent process is 6,796 µg/l maximum for any one day and 3,325 µg/l maximum for monthly average.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

Subchapter XI - Indirect Discharge Point Sources

NR 235.98 Applicability; description of the subcategory of indirect discharge point sources. This subchapter applies to the process wastewater discharges resulting from the manufacture of the OCPSF products and products groups defined by s. NR 235.02 from any indirect discharge point source. History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

NR 235.99 Toxic pollutant standards for indirect discharge point sources. (1) Any point source subject to this subchapter must achieve discharges not exceeding the quantity determined by multiplying the process wastewater flow times the concentrations in the following table.

(2) For chromium, copper, lead, nickel, zinc and total cyanide:

(a) The discharge quantity shall be determined by multiplying the concentrations listed in the following table for these pollutants times the flow from the metal-bearing waste streams for the metals and times the flow from the cyanide bearing waste streams for total cyanide.

(b) The metal-bearing waste streams and cyanide-bearing waste streams are defined as:

1. Those waste streams listed in Appendix A.

2. Any additional OCPSF process wastewater streams identified by the permitting authority on a case-by-case basis as metal or cyanide bearing based upon a determination that such streams contain significant amounts of the pollutants identified above.

(c) Any streams designated under par. (b) 2. shall be treated independently of other metal or cyanide bearing waste streams unless the permitting authority determines that the combination of such streams, prior to treatment, with the Appendix A waste streams will result in substantial reduction of these pollutants. This determination shall be based upon a review of relevant engineering, production, and sampling information.

nd PSNS ¹		Pollutant or pollutant	μg/l	µg/l
Maximum	Maximum	property		
for any 1 day	for monthly	Ethylbenzene	380	142
	average	Fluoranthene	54	22
μg/l	μg/l	Fluorene	47	19
		Hexachlorobenzene	794	196
		Hexachlorobutadiene	380	142
47	19	Hexachlorethane	794	196
134	57	Methyl chloride	295	110
258	95	Methylene chloride	170	36
380	142	Naphthalene	47	19
380	142	Nitrobenzene	6,402	2,237
295	110	2-Nitrophenol	231	65
325	111		576	162
43	20	•		19
794	196	Pyrene	48	20
380	142	5		52
380	142	-		28
59	22			420
574	180	-		320
60	22			1,050
66	25		· · ·	1,050
794	196			22
794	196	, ,		
113	46			32
				26
		Vinyl chloride	172	97
	for any 1 day μg/l 47 47 134 258 380 380 295 325 43 794 380 380 380 59 574 60 66 794 794	Maximum for any 1 dayMaximum for monthly averageμg/lμg/l4719471913457258953801422951103251114320794196380142592257418060226625794196794196113464719	Maximum for any 1 dayMaximum for monthly averageproperty $\mu g/l$ $\mu g/l$ Ethylbenzene $\mu g/l$ $\mu g/l$ Fluoranthene 47 19Hexachlorobenzene4719Hexachlorobutadiene4719Hexachlorobutadiene13457Methyl chloride25895Methylene chloride380142Naphthalene380142Nitrobenzene2951102-Nitrophenol3251114-Nitrophenol4320Phenanthrene794196Pyrene380142Toluene5922Total Lead6022Total Lead60251,2,4-Trichlorobenzene7941961,1,1-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichloroethane7941961,1,2-Trichl	Maximum for any 1 dayMaximum for monthly averageproperty1 $\mu g/l$ $\mu g/l$ $\mu g/l$ Ethylbenzene380 $\mu g/l$ $\mu g/l$ Fluoranthene54 $\mu g/l$ $\mu g/l$ Fluorene4719Hexachlorobenzene79413457Methyl chloride29525895Methylene chloride170380142Napthalene47380142Nitrobenzene6,4022951102-Nitrophenol2313251114-Nitrophenol5764320Phenanthrene47794196Pyrene48380142Totuene745922Total Cyanide1,200574180Total Lead6906022Total Zinc ² 2,61066251,2,4-Trichlorobenzene7947941961,1,1-Trichloroethane597941961,1,2-Trichloroethane597941961,1,2-Trichloroethane12711346Trichloroethylene694719Vinyl chloride172

¹All units are micrograms per liter.

Register November 2024 No. 827

 2 Total zinc for rayon fiber manufacture that uses the viscose process and acrylic fiber manufacture that uses the zinc chloride/solvent process is 6,796 µg/l maximum for any one day and 3,325 µg/l maximum monthly average.

History: Cr. Register, March, 1997, No. 495, eff. 4-1-97.

APPENDIX A TO CHAPTER NR 235 - NONCOMPLEXED METAL-BEARING WASTE STREAMS AND CYANIDE-BEARING WASTE STREAMS

Chromium Bearing Waste Streams

Product	Process
Methylhydroabietate	Esterification of hydroabietic acid (rosin) with methanol
Acrylic acid	Oxidation of propylene via acrolein
N-Butyl alcohol	Hydrogenation of n-butyraldehyde, Oxo process
Cyclohexanone	From phenol via cyclohexanol by hydrogenation- dehydrogenation
Fatty amines	Batch hydrogenation of fatty nitriles
Heliotropin	Oxidation of isosafrole, chromium catalyst
Isobutanol	Hydrogenation of isobutyraldehyde, Oxo process
Cyclohexyl mercaptan	Cyclohexanol + hydrogen sulfide
Ethyl mercaptan	Ethanol + hydrogen sulfide
Methanol	H.P. synthesis from natural gas via synthetic gas
Oxo alcohols, C7-C11	Carbonation and hydrogenation of C6-C10 olefins
Polyoxypropylene diamine	Polypropylene glycol + ammonia
n-Propyl alcohol	Hydrogenation of propionaldehyde, oxo process
SAN resin	Suspension polymerization
Styrene	Dehydrogenation of ethylbenzene
Styrene	Dehydration of methyl benzyl alcohol, coproduct of propylene oxide
1-Tetralol, 1-tetralone mix	Oxidation of tetralin (1,2,3,4- tetrahydronaphthalene)
3,3,3-Trifluoropropene	Catalyzed hydrogen fluoride exchange with chlorinated propar
Vinyl toluene	Thermal dehydrogenation of ethyltoluene
Copper Bea	aring Waste Streams
Product	Process
Methylhydroabietate	
	Esterfication of hydroabietic acid (rosin) with methanol
	Esterfication of hydroabietic acid (rosin) with methanol Oxidation of ethylene with cupric chloride catalyst
Acetaldehyde	-
Acetaldehyde Acetic acid	Oxidation of ethylene with cupric chloride catalyst
Acetaldehyde Acetic acid Acetone	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane
Acetaldehyde Acetic acid Acetone Acrylamide	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile Adiptic Acid	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile Adiptic Acid Adipic acid	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation Oxidation of cyclohexanol-cyclohexanone mixture Oxidation of cyclohexane via cyclohexanol-cyclohexanone
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile Adiptic Acid Adiptic acid	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation Oxidation of cyclohexanol-cyclohexanone mixture Oxidation of cyclohexane via cyclohexanol-cyclohexanone mixture
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile Adiptic Acid Adiptic acid Allynitrile Aniline	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation Oxidation of cyclohexanol-cyclohexanone mixture Oxidation of cyclohexane via cyclohexanol-cyclohexanone mixture Allychloride + sodium cyanide
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile Adiptic Acid Adiptic acid Allynitrile Aniline Benzofurans, 2,3 dihydro-2,2-dimethyl-7-benzofuranol	Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation Oxidation of cyclohexanol-cyclohexanone mixture Oxidation of cyclohexane via cyclohexanol-cyclohexanone mixture Allychloride + sodium cyanide Hydrogenation of nitrobenzene
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile Adiptic Acid Adiptic acid Allynitrile Aniline Benzofurans, 2,3 dihydro-2,2-dimethyl-7-benzofuranol n-Butyl alcohol	 Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation Oxidation of cyclohexanol-cyclohexanone mixture Oxidation of cyclohexane via cyclohexanol-cyclohexanone mixture Allychloride + sodium cyanide Hydrogenation of nitrobenzene From o-Nitrophenol + methallyl chloride
Acetaldehyde Acetic acid Acetone Acrylamide Acrylic acid Acrylonitrile Adiptic Acid Adiptic acid Allynitrile Aniline Benzofurans, 2,3 dihydro-2,2-dimethyl-7-benzofuranol n-Butyl alcohol 1,4 Butanediol	 Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation Oxidation of cyclohexanol-cyclohexanone mixture Oxidation of cyclohexane via cyclohexanol-cyclohexanone mixture Allychloride + sodium cyanide Hydrogenation of nitrobenzene From o-Nitrophenol + methallyl chloride Hydrogenation of n-butyraldehyde, oxo process
Acetaldehyde Acetic acid Acetone Acrylamide Acrylamide Acrylonitrile Adiptic Acid Adiptic Acid Adiptic acid Allynitrile Aniline Benzofurans, 2,3 dihydro-2,2-dimethyl-7-benzofuranol n-Butyl alcohol 1,4 Butanediol Butryolactone Caprolactam	 Oxidation of ethylene with cupric chloride catalyst Catalytic oxidation of butane Dehydrogenation of isopropanol Catalytic hydration of acrylonitrile Oxidation of propylene via acrolein Propylene ammoxidation Oxidation of cyclohexanol-cyclohexanone mixture Oxidation of cyclohexane via cyclohexanol-cyclohexanone mixture Allychloride + sodium cyanide Hydrogenation of nitrobenzene From o-Nitrophenol + methallyl chloride Hydrogenation of 1,4-butynediol

WISCONSIN ADMINISTRATIVE CODE

Product	Process
1,2-Dichloroethane	Oxyhydrochlorination of ethylene
Dialkyldithiocarbamates, metal salts	Dialkylamines + carbon disulfide
2-Ethylhexanol	From n-butyraldehyde by aldo condensation and hydrogenation
Fatty amines	Batch hydrogenation of fatty nitriles
Geraniol	B-Myrcene + hydrogen chloride, esterfication of geranyl chloride hydrolysis of geranyl acetate
Furfuryl alcohol	Hydrogenation of furfural
Geraniol (citral)	Oxidation of geraniol, copper catalyst
Glyoxal	Oxidation of ethylene glycol
Isobutanol	Hydrogenation of isobutyraldehyde, Oxo process
Isopropanol	Catalytic hydrogenation of acetone
2-Mercaptobenzothiazoles, copper salt	2-Mercaptobenzothiazole + copper salt
Methanol	High pressure synthesis from natural gas via synthetic gas
Methanol	Low pressure synthesis from natural gas via synthetic gas
Methyl ethyl ketone	Dehydrogenation of sec-butanol
C7-C11 oxo alcohols	Carbonation and hydrogenation of C6-C10 olefins
Phenol	Liquid phase oxidation of benzoic acid
Polyoxyalkylene amines	Polyoxyalkylene glycol + ammonia
Polyphenylene oxide	Solution polymerization of 2-6-xylenol by oxidative coupling cuprous salt catalyst
Polyoxypropylene diamine	Polypropylene glycol + ammonia
Quinaldine dye intermediate	Skraup reaction of aniline crotonaldehye
Silicone fluids	Hydrolysis and condensation of chlorosilanes
Silicone rubbers	Hydrolysis and condensation of chlorosilanes
Silicone specialties, such as grease, dispersion agents, de- foamers, and other products	
Silicone resins	Hydrolysis and condensation of methyl, phenyl, and vinyl chlorosilanes
Silicone fluids	Hydrolysis of chlorosilanes to acyclic and cyclic organosiloxanes
Styrene	Dehydration of a-methylbenzyl alcohol, coproduct of propylene oxide
Tetrachloroethylene (perchloroethylene)	Oxyhydrochlorination of tetrachloroethane
Tris(anilino)s-triazine	Cyanuric chloride + aniline + cogeners
Trichloroethylene	Oxyhydrochlorination of tetrachloroethane
Unsaturated polyester resin	Reaction of maleic anhydride + phthalic anhydride + propylene glycol polyester with styrene or methyl methacrylate

Cyanide Bearing Waste Streams

Product	Process
Acetone cyanohydrin	Acetone + hydrogen cyanide
Acetonitrile	By-product of acrylonitrile from propylene by ammoxidation
Acrylic resins	Solution polymerization
Acrylic fiber (85% acrylonitrile)	Suspension polymerization and wet spinning
Acrylic fiber (85% acrylonitrile)	Solution polymerization and wet spinning
Acrylonitrile	Ammoxidation of propylene
Adiponitrile	Butadiene + hydrogen cyanide (direct cyanation)
Allylnitrile	Allyl chloride + sodium cyanide

NR 235.99

Dimethoxybenzaldehyde	Hydroquinone dimethyl ether + hydrogen cyanide, hydrolysis
Benzyl cyanide	Benzyl chloride + sodium cyanide
Coal tar products	Distillation of coal tar condensate
Cyanoacetic acid	Chloracetic acid + sodium cyanide
Cyanuric chloride	Catalyzed trimerization of cyanogen chloride
Vat dyes, indigo paste as vat blue 1	Sodamide + potassium N-phenylglycine, fused with caustic; or N-phenylglycine + ani- line +formaldehyde + sodium bisulfite, sodium cyanide hydroly sis with potassium hydroxide
Disperse dyes, azo and vat	
Ethylenediamine tetraacetic acid	Ethylene diamine + formaldehyde + sodium cyanide
Diethylenetriamine pentaacetic acid	Diethylenetriamine + formaldehyde + sodium cyanide
N,N'-Bis(o-acetamidophenol)ethylene- diamine, ferric complex	Salicylaldehyde + ethylene diamine + hydrogen cyanide, hydroly sis to amide
Diethylenetriamine pentaacetic acid, pentasodium salts	Diethylenetriamine pentaacetic acid + caustic
Hydroxyethyl ethylenediamine triacetic acid, trisodium salt	Ethylene diamine + ethylene oxide + formaldehyde + sodium cyanide, hydrolysis
5,5 Dimethyl hyantoin	Acetone + ammonia + carbon dioxide + hydrogen cyanide
Hydrogen cyanide	Byproduct of acrylonitrile by ammoxidation of propylene
Iminodiacetic acid	Hexamethylene tetraamine + hydrogen cyanide, hydrolysis of iminoacetonitrile salt
Methionine	Acrolein + methyl mercaptan, with hydrogen cyanide and ammo nium carbonate
Nitrilotriacetic acid	Hexamethylene tetraamine + hydrogen cyanide, hydrolysis of ni trilotriacetonitrile salt
Picolines, mixed	Condensation of acetaldehyde + formaldehyde + ammonia
Organic pigments, azo	Diazotization of aniline cogener, coupling to B-napthol
2-Isopropyl-4-methoxy-pyrimidines	Isobutyronitril + methanol, ammonia and methylacetoacetate, ring closure
Synthetic pyridine	Condensation of acetaldehyde + ammonia + formaldehyde
Cyanopyridine	Ammoxidation of picoline
Sarcosine (N-methyl glycine) sodium salt	Hexamethylene tetraamine + sodium cyanide, hydrolysis
Thiophene acetic acid	Chloromethylation (hydrogen chloride + formaldehyde) + sodium cyanide, hydrolysis
Tris(anilino)S-triazine	Cyanuric chloride + aniline and its cogeners
Triethylorthoformate	Ethanol + hydrogen cyanide
Trimethylorthoformate	Methanol + hydrogen cyanide
Lead Bearing	Waste Streams
Product	Process
Alkyd resin	Condensation polymerization
Alkyd resins	Condensation polymerization of phthalic anhydride + glycerin - vegetable oil esters
Dialkyldithiocarbamates, metal salts	Dialkylamines + carbon disulfide
Thiuram (dimethyldithiocarbamate) hexasulfide	Dimethyldithiocarbamate + sulfur
Triphenylmethane dyes (methyl violet)	Condensation of formaldehyde + N-methylaniline + N,N- dimethylaniline, oxidation of reaction product
4,4-Bis(N,N-dimethylaniline) carbinol, Michler's hydrol	Oxidation of 4,4-methanylene-bis(N,N-dimethylaniline) with lead oxide
Naphthenic acid salts	
Stearic acid, metal salts	Neutralization with a metallic base

WISCONSIN ADMINISTRATIVE CODE

Nic	Nickel Bearing Waste Streams				
Product	Process				
Acetates, 7,11-hexadecadien-1-ol (gossyplure)	Coupling reactions, low pressure hydrogenation, esterification				
Acetates, 9-dodecen-1-ol pheromone	Coupling reactions, low pressure hydrogenation, esterification				
Acrylic acid	Oxidation of propylene via acrolein				
Acrylonitrile	Propylene ammoxidation				
n-Alkanes	Hydrogenation of C6-C22 alpha olefins (ethylene oligomers)				
Adiponitrile	Direct cyanation of butadiene				
Alkyl amines	Amination of alcohols				
4-Aminoacetanilide	Hydrogenation of 4-Nitroacetanilide				
BTX	Hydrogenation of olefins (cyclohexenes)				
Hydrogenated terphenyls	Nickel catalyst, hydrogenation of terphenyl				
Bisphenol-A, hydrogenated (biscyclohexanol-A)	Hydrogenation of bisphenol-A				
Butadiene (1,3)	Extractive distillation of C-4-pyrolyzates				
n-Butanol	Hydrogenation of n-butyraldehyde, oxo process				
1,3 Butylene glycol	Hydrogenation of acetaldol				
1,4 Butanediol	Hydrogenation of 1,4 butynediol				
Butylenes mixed	Distillation of C4 pyrolyzates				
4-Chloro-2-aminophenol	Hydrogenation of 4-chloro-2-nitrophenol				
Lilial (hydroxydihydrocitronellal)	Hydration and oxidation of citronellol				
Cycloparaffins	Catalytic hydrogenation of aromatics in kerosene solvent				
Cyclohexanol	Hydrogenation of phenol, distillation				
Cyclohexanone	From phenol via cyclohexanol by hydrogenation-dehydrogenation				
Dialkyldithiocarbamates, metal salts	Dialkylamines + carbon disulfide				
Ethylamine	Reductive amination of ethanol				
Ethylamines (mono, di, and tri)	Reductive amination (ammonia + hydrogen) of ethanol				
Isoeugenol, high percent trans	Separation of mixed cis and trans isoeugenols				
2-Ethylhexanol	From n-butyraldehyde by aldol condensation and hydrogenation				
Hydrogenated fatty acids	Tallow and coco acids + hydrogen				
Fatty amines	Batch hydrogenation of fatty nitriles				
Fatty amines	Hydrogenation of tallow and coco nitriles				
Glyoxal-urea formaldehyde textile resin	Condensation to N-bis(hydroxymethyl)ureas and N,N'-di(hydroxyethyl) ureas				
11-Hexadecenal	Coupling reactions, low pressure hydrogenation				
Hexahydrophthalic anhydride	Condensation of butadiene and maleic anhydride (Diels-Alder reaction) + hydrogenation				
Isobutanol	Hydrogenation of isobutyraldehyde, oxo process				
Diisobutyl amine	Ammonolysis of isobutanol				
Isopropyl amines (mono, di)	Reductive amination (ammonia + hydrogen) of isopropanol				
Linalool	Pyrolysis of 2-pinanol				
Methanol	High pressure synthesis from natural gas via synthetic gas				
Methanol	Low pressure synthesis from natural gas via synthetic gas				
Methanol	Butane oxidation				
Tris-(hydroxymethyl)methyl amine	Hydrogenation of tris(hydroxymethyl) nitromethane				
N-Methyl morpholine	Morpholine + methanol				
N-Ethyl morpholine	Morpholine + ethanol				
2-Methyl-7,8-epoxy octadecane	Coupling reactions, low pressure hydrogenation, epoxidation				

Published under s. 35.93, Stats. Updated on the first day of each month. Entire code is always current. The Register date on each page is the date the chapter was last published.

Register November 2024 No. 827

Product	Process
Alpha-olefins	Ethylene oligomer and Zeigler catalyst
Petroleum hydrocarbon resins, hydrogenated	Hydrogenation of petroleum hydrocarbon resin products
Pinane	Hydrogenation of A-pinene
2-Pinanol	Reduction of pinane hydroperoxide
Bis-(p-octylphenol)sulfide, nickel salt	p-Octylphenol + sulfur chloride (S2C12) neutralize with nickel base
Piperazine	Reductive amination of ethanol amine (ammonia and hydrogenation metal catalyst)
N,N-Dimethylpiperazine	Condensation piperazine + formaldehyde hydrogenation
Polyoxyalkylene amines	Polyoxyalkylene glycol + ammonia
Polyoxypropylene diamine	Polypropylene glycol + ammonia
2-Amino-2-methyl-1-propanol	Hydrogenation of 2-nitro 2-methyl-1-propanol
3-Methoxypropyl amine	Reductive amination of acrylamide with methanol and hydrogen
N-Propylamine	Reductive amination (ammonia + hydrogen) of n-propanol
Sorbitol	Hydrogenation of sugars
Sulfolane	Condensation butadiene + sulfur dioxide, hydrogenation
Thionocarbamates, N-ethyl-o-isopropyl	Isopropyl xanthate + ethylamine
Toluene diamine (mixture)	Catalytic hydrogenation of dinitrotoluene
Methylated urea formaldehyde resins (textile)	Methylation of urea-formaldehyde adduct
Methylated urea-formaldehyde glyoxol (textile resins)	Reaction of methylated urea- formaldehyde + glyoxal
Zinc	Bearing Waste Streams
Product	Process
Methylhydroabietate, diels-alder adducts	Derivatives of abietic esters from rosin
Acrylic resins	Emulsion or solution polymerization to coatings
Acrylic resins (latex)	Emulsion polymerization of acrylonitrile with polybutadiene
Acrylic fibers (85% polyacrylonitrile)	By solution polymerization/wet spinning
Alkyd resins	Condensation polymerization of phthalic anhydride + glycerin + ve etable oil esters

Ethylbenzyl chlorideChloromethylation (hydrogen chloride + formaldehyde, zinc chloride)
of ethylbenzene2-Ethyl hexanolAldol condensation-hydrogenation of n-butyraldehydeGlyoxal-urea formaldehyde textile resinCondensation to N-bis (hydroxymethyl) ureas + N,N'-(dihydroxyethyl)
ureasIsobutanolHydrogenation of isobutyraldehyde, Oxo processIsopropanolCatalytic hydrogenation of acetone

Coumarin based

By-product of styrene by ethyl- benzene dehydrogenation

Catalytic hydrogenation of aromatics in kerosene solvent Reaction of zinc oxide + sodium dithiocarbamates

Byproduct of vinyl toluene from ethyl toluene

Salicylaldehyde, Oxo process

Dialkylamines + carbon disulfide

Dithiocarbamic acid + metal oxide

Dimethyldithiocarbamate + sulfur

Benzene alkylation in liquid phase

Redox reaction (Tschenko) of acetaldehyde

Hydrogenation of n-butyraldehyde, oxo process

Benzene

Benzene

n-Butyl alcohol

Cycloparaffins

Ethyl acetate

Ethylbenzene

Coumarin (benz-a-pyrone)

Dithiocarbamates, zinc salt

Dithiocarbamates, metal salts

Fluorescent brighteners

Dialkyldithiocarbamates, metal salts

Thiuram (dimethyldithiocarbamate) hexasulfide

WISCONSIN ADMINISTRATIVE CODE

Product	Process
Methallylidene diacetate	Condensation of 2-methypropenal + acetic anhydride
Methanol	Low pressure synthesis from natural gas via synthetic gas
Methyl chloride	Hydrochlorination of methanol
Methylethyl ketone	Dehydrogenation of sec-butanol
Naphthenic acid salts	
Nylon	
Nylon 6 and 66 copolymers	Polycondensation of nylon salt + caprolatam
Nylon 6 fiber	Extrusion melt spinning
C12-C15 oxo alcohols	Hydroformylation and hydrogenation of C11-C14 olefins
Phenolic urethan resins	Phenol + excess formaldehyde + methylene aniline diisocyanate
Polystyrene crystal modified	Polystyrene + sulfonation, Chloromethylation and/or amination
Rayon	Viscose process
SAN resin	Emulsion polymerization
Silicone rubbers	Hydrolysis and condensation of chlorosilanes
Silicone specialties, such as grease, dispersion agents, de- foamers, and other products	
Silicone resins	Hydrolysis and condensation of methyl, phenyl, and vinyl chlorosilane
Silicone fluids	Hydrolysis of chlorosilanes to acyclic and cyclic organosiloxanes Neutralization with a metallic base
Stearic acid, metal salts	Neutralization with a metallic base
Styrene	Dehydrogenation of ethylbenzene
Styrene-butadiene resin	Emulsion polymerization
Vinyl acetate	Reduction of acetylene + acetic acid
Vinyl toluene	Thermal dehydrogenation of ethyltoluene
Xylenes, mixed	By-product vinyl toluene from ethyltoluene

Note: The Wisconsin administrative code corresponds to the code of federal regulations according to the following table:

State Code	Code of Federal Regulations	
s. NR 205.03	40 CFR 401.11	
s. NR 205.04	40 CFR 401.11	
ch. NR 211	40 CFR Part 403	
s. NR 211.03	40 CFR 403.3	
s. NR 211.13	40 CFR 403.7	
s. NR 211.14	40 CFR 403.17	
ch. NR 235	40 CFR Part 414	